

Rubicon Objective-C

Rubicon Objective-C is a bridge between Objective-C and Python. It enables you
to:

	Use Python to instantiate objects defined in Objective-C,

	Use Python to invoke methods on objects defined in Objective-C, and

	Subclass and extend Objective-C classes in Python.

It also includes wrappers of the some key data types from the Foundation
framework (e.g., NSString).

Table of contents

Tutorial

Get started with a hands-on introduction for beginners

How-to guides

Guides and recipes for common problems and tasks, including how to contribute

Background

Explanation and discussion of key topics and concepts

Reference

Technical reference - commands, modules, classes, methods

Community

Rubicon is part of the BeeWare suite [https://beeware.org]. You can talk to the community through:

	@pybeeware on Twitter [https://twitter.com/pybeeware]

	beeware/general on Gitter [https://gitter.im/beeware/general]

Tutorials

These tutorials are step-by step guides for using Rubicon.

	Your first bridge

	Tutorial 2 - Writing your own class

Tutorial 1 - Your first bridge

In Your first bridge, you will use Rubicon to invoke an existing Objective-C
library on your computer.

Tutorial 2 - Writing your own class

In Tutorial 2 - Writing your own class, you will write a Python class, and expose it to the
Objective-C runtime.

Your first bridge

In this example, we’re going to use Rubicon to access the Objective-C
Foundation library, and the NSURL class in that library. NSURL is the
class used to represent and manipulate URLs.

This tutorial assumes you’ve set up your environment as described in the
Getting started guide.

Accessing NSURL

Start Python, and get a reference to an Objective-C class. In this example,
we’re going to use the NSURL class, Objective-C’s representation of URLs:

>>> from rubicon.objc import ObjCClass
>>> NSURL = ObjCClass("NSURL")

This gives us an NSURL class in Python which is transparently bridged to the
NSURL class in the Objective-C runtime. Any method or property described in
Apple’s documentation on NSURL [https://developer.apple.com/reference/foundation/nsurl?language=objc] can
be accessed over this bridge.

Let’s create an instance of an NSURL object. The NSURL documentation
describes a static constructor +URLWithString:; we can invoke this
constructor as:

>>> base = NSURL.URLWithString("https://beeware.org/")

That is, the name of the method in Python is identical to the method in
Objective-C. The first argument is declared as being an NSString *; Rubicon
converts the Python str into an NSString instance as part of invoking the
method.

NSURL has another static constructor: +URLWithString:relativeToURL:. We
can also invoke this constructor:

>>> full = NSURL.URLWithString("contributing/", relativeToURL=base)

The second argument (relativeToURL) is accessed as a keyword argument. This
argument is declared as being of type NSURL *; since base is an instance
of NSURL, Rubicon can pass through this instance.

Sometimes, an Objective-C method definition will use the same keyword
argument name twice. This is legal in Objective-C, but not in Python, as you
can’t repeat a keyword argument in a method call. In this case, you can use a
“long form” of the method to explicitly invoke a descriptor by replacing
colons with underscores:

>>> base = NSURL.URLWithString_("https://beeware.org/")
>>> full = NSURL.URLWithString_relativeToURL_("contributing", base)

Instance methods

So far, we’ve been using the +URLWithString: static constructor. However,
NSURL also provides an initializer method -initWithString:. To use this
method, you first have to instruct the Objective-C runtime to allocate memory
for the instance, then invoke the initializer:

>>> base = NSURL.alloc().initWithString("https://beeware.org/")

Now that you have an instance of NSURL, you’ll want to manipulate it.
NSURL describes an absoluteURL property; this property can be
accessed as a Python attribute:

>>> absolute = full.absoluteURL

You can also invoke methods on the instance:

>>> longer = absolute.URLByAppendingPathComponent('how/first-time/')

If you want to output an object at the console, you can use the Objective-C
property description, or for debugging output, debugDescription:

>>> longer.description
'https://beeware.org/contributing/how/first-time/'

>>> longer.debugDescription
'https://beeware.org/contributing/how/first-time/>'

Internally, description and debugDescription are hooked up to their Python
equivalents, __str__() and __repr__(), respectively:

>>> str(absolute)
'https://beeware.org/contributing/how/first-time/'

>>> repr(absolute)
'<rubicon.objc.api.ObjCInstance 0x1114a3cf8: NSURL at 0x7fb2abdd0b20: https://beeware.org/contributing/>'

>>> print(absolute)
<rubicon.objc.api.ObjCInstance 0x1114a3cf8: NSURL at 0x7fb2abdd0b20: https://beeware.org/contributing/>

Time to take over the world!

You now have access to any method, on any class, in any library, in the
entire macOS or iOS ecosystem! If you can invoke something in Objective-C, you
can invoke it in Python - all you need to do is:

	load the library with ctypes;

	register the classes you want to use; and

	Use those classes as if they were written in Python.

Next steps

The next step is to write your own classes, and expose them into the
Objective-C runtime. That’s the subject of the next tutorial.

Tutorial 2 - Writing your own class

Eventually, you’ll come across an Objective-C API that requires you to provide
a class instance as an argument. For example, when using macOS and iOS GUI
classes, you often need to define “delegate” classes to describe how a GUI
element will respond to mouse clicks and key presses.

Let’s define a Handler class, with two methods:

	an -initWithValue: constructor that accepts an integer; and

	a -pokeWithValue:andName: method that accepts an integer and a string,
prints the string, and returns a float that is one half of the value.

The declaration for this class would be:

from rubicon.objc import NSObject, objc_method

class Handler(NSObject):
 @objc_method
 def initWithValue_(self, v: int):
 self.value = v
 return self

 @objc_method
 def pokeWithValue_andName_(self, v: int, name) -> float:
 print("My name is", name)
 return v / 2.0

This code has several interesting implementation details:

	The Handler class extends NSObject. This instructs Rubicon to
construct the class in a way that it can be registered with the
Objective-C runtime.

	Each method that we want to expose to Objective-C is decorated with
@objc_method.The method names match the Objective-C descriptor that
you want to expose, but with colons replaced by underscores. This matches
the “long form” way of invoking methods discussed in Your first bridge.

	The v argument on initWithValue_() uses a Python 3 type annotation
to declare it’s type. Objective-C is a language with static typing, so
any methods defined in Python must provide this typing information.
Any argument that isn’t annotated is assumed to be of type id - that is,
a pointer to an Objective-C object.

	The pokeWithValue_andName_() method has it’s integer argument
annotated, and has it’s return type annotated as float. Again, this is
to support Objective-C typing operations. Any function that has no
return type annotation is assumed to return id. A return type
annotation of None will be interpreted as a void method in
Objective-C. The name argument doesn’t need to be annotated because it
will be passed in as a string, and strings are NSObject subclasses
in Objective-C.

	initWithValue_() is a constructor, so it returns self.

Having declared the class, you can then instantiate and use it:

>>> my_handler = Handler.alloc().initWithValue(42)
>>> print(my_handler.value)
42
>>> print(my_handler.pokeWithValue(37, andName="Alice"))
My name is Alice
18.5

Objective-C properties

When we defined the initializer for Handler, we stored the provided value
as the value attribute of the class. However, as this attribute wasn’t
declared to Objective-C, it won’t be visible to the Objective-C runtime.
You can access value from within Python - but Objective-C code won’t be able
to access it.

To expose value to the Objective-C runtime, we need to make one small change,
and explicitly declare value as an Objective-C property:

from rubicon.objc import NSObject, objc_method, objc_property()

class PureHandler(NSObject):
 value = objc_property()

 @objc_method
 def initWithValue_(self, v: int):
 self.value = v
 return self

This doesn’t change anything about how you access or modify the attribute - it
just means that Objective-C code will be able to see the attribute as well.

Class naming

In this revised example, you’ll note that we also used a different class name
- PureHandler. This was deliberate, because Objective-C doesn’t have any
concept of namespaces. As a result, you can only define one class of any given
name in a process - so, you wont be able to define a second Handler class in
the same Python shell. If you try, you’ll get an error:

>>> class Handler(NSObject):
... pass
Traceback (most recent call last)
...
RuntimeError: ObjC runtime already contains a registered class named 'Handler'.

You’ll need to be careful (and sometimes, painfully verbose) when choosing class
names.

What, no __init__()?

You’ll also notice that our example code doesn’t have an __init__() method
like you’d normally expect of Python code. As we’re defining an Objective-C
class, we need to follow the Objective-C object lifecycle - which means
defining initializer methods that are visible to the Objective-C runtime, and
invoking them over that bridge.

Next steps

???

How-to Guides

How-to guides are recipes that take the user through steps in key subjects.
They are more advanced than tutorials and assume a lot more about what the user
already knows than tutorials do, and unlike documents in the tutorial they can
stand alone.

	Getting Started with Rubicon

	You’re just not my type: Using Objective-C types in Python
	Type annotations

	Type conversions

	Python-style APIs and methods for Objective-C objects

	Manual conversions

	Memory management for Objective-C instances
	Reference counting in Rubicon Objective-C

	Reference cycles in Objective-C

	Using and creating Objective-C protocols
	Looking up a protocol

	Implementing a protocol

	Writing custom protocols

	Asynchronous Programming with Rubicon
	Integrating asyncio with CoreFoundation

	Integrating asyncio with AppKit and NSApplication

	Integrating asyncio with iOS and UIApplication

	Calling plain C functions from Python
	A simple example: puts

	Inline functions (e.g. NSLocationInRange)

	Global variables and constants (e.g. NSFoundationVersionNumber)

	A complex example: dispatch_get_main_queue

	Further information

	How to contribute code to Rubicon
	Set up your development environment

	Contributing to the documentation
	Create a .rst file

	Build documentation locally

	Internal How-to guides
	How to cut a Rubicon-ObjC release

Getting Started with Rubicon

To use Rubicon, create a new virtual environment, and install it:

$ python3 -m venv venv
$ source venv/bin/activate.sh
(venv) $ pip install rubicon-objc

You’re now ready to use Rubicon! Your next step is to work through the
Tutorials, which will take you step-by-step through your first
steps and introduce you to the important concepts you need to become familiar
with.

You’re just not my type: Using Objective-C types in Python

Objective-C is a strongly and statically-typed language. Every variable has a
specific type, and that type cannot change over time. Function parameters also
have fixed types, and a function will only accept arguments of the correct
types.

Python, on the other hand, is a strongly, but dynamically-typed language.
Every object has a specific type, but all variables can hold objects of any
type. When a function accepts an argument, Python will allow you to pass any
object, of any type.

So, if you want to bridge between Objective-C and Python, you need to be able
to provide static typing information so that Rubicon can work out how to
convert a Python object of arbitrary type into a specific type matching
Objective-C’s expectations.

Type annotations

If you’re calling an Objective-C method defined in a library, its types are
already known to the Objective-C runtime and Rubicon. However, if you’re
defining a new method (or a method override) in Python, you need to manually
provide its types. This is done using Python 3’s type annotation syntax.

Passing and returning Objective-C objects doesn’t require any extra work —
if you don’t annotate a parameter or the return type, Rubicon assumes that it
is an Objective-C object. (To define a method that doesn’t return anything, you
need to add an explicit -> None annotation.)

All other parameter and return types (primitives, pointers, structs) need to be
annotated to tell Rubicon and Objective-C which type to expect. These
annotations can use any of the types defined by Rubicon, such as
NSInteger or NSRange,
as well as standard C types from the ctypes module, such as
c_byte or c_double.

For example, a method that takes a C double and returns a
NSInteger would be defined and annotated like
this:

@objc_method
def roundToZero_(self, value: c_double) -> NSInteger:
 return int(value)

Rubicon also allows certain Python types to be used in method signatures, and
converts them to matching primitive ctypes types. For example, Python
int is treated as c_int, and float is
treated as c_double.

See also

The rubicon.objc.types reference documentation lists all C type
definitions provided by Rubicon, and provides additional information about
how Rubicon converts types.

Type conversions

When you call existing Objective-C methods, Rubicon already knows which type
each argument needs to have and what it returns. Based on this type
information, Rubicon will automatically convert the passed arguments to the
proper Objective-C types, and the return value to an appropriate Python type.
This makes explicit type conversions between Python and Objective-C types
unnecessary in many cases.

Argument conversion

If an Objective-C method expects a C primitive argument, you can pass an
equivalent Python value instead. For example, a Python int value can
be passed into any integer argument (int, NSInteger, uint8_t, …),
and a Python float value can be passed into any floating-point
argument (double, CGFloat, …).

To pass a C structure as an argument, you would normally need to construct a
structure instance by name. This can get somewhat lengthy, especially with
nested structures (e. g. NSRect(NSPoint(1.2, 3.4), NSSize(5.6, 7.8))). As a
shorthand, Rubicon allows passing tuples instead of structure objects (e. g.
((1.2, 3.4), (5.6, 7.8))) and automatically converts them to the required
structure type.

If a parameter expects an Objective-C object, you can also pass certain Python
objects, which are automatically converted to their Objective-C counterparts.
For example, a Python str is converted to an NSString,
bytes to NSData, etc. Collections are also supported:
list and dict are converted to NSArray and
NSDictionary, and their elements are converted recursively.

Note

All of these conversions can also be performed manually - see
Manual conversions for details.

Return value conversion and wrapping

Primitive values returned from methods are converted using the usual
ctypes conversions, e. g. C integers are converted to Python
int and floating-point values to Python float.

Objective-C objects are automatically returned as
ObjCInstance objects, so you can call methods on
them and access their properties. In some cases, Rubicon also provides
additional Python methods on Objective-C objects -
see Python-style APIs and methods for Objective-C objects for details.

Python-style APIs and methods for Objective-C objects

For some standard Foundation classes, such as lists and dictionaries,
Rubicon provides additional Python methods to make them behave more like their
Python counterparts. This allows using Foundation objects in place of regular
Python objects, so that you do not need to convert them manually.

Strings

NSString objects behave almost exactly like Python
str objects - they can be sliced, concatenated, compared, etc. with
other Objective-C and Python strings.

Call an Objective-C method that returns a string.
We're using NSBundle to give us a string version of a path
>>> NSBundle.mainBundle.bundlePath
<rubicon.objc.collections.ObjCStrInstance 0x114a94d68: __NSCFString at 0x7fec8ba7fbd0: /Users/brutus/path/to/somewhere>

Slice the Objective-C string
>>> NSBundle.mainBundle.bundlePath[:14]
<rubicon.objc.collections.ObjCStrInstance 0x114aa80f0: __NSCFString at 0x7fec8ba7fbd0: /Users/brutus/>

Note

ObjCInstance objects wrapping a
NSString internally have the class
ObjCStrInstance, and you will see this name in the repr() of
NSString objects. This is an implementation
detail - you should not refer to the ObjCStrInstance class explicitly
in your code.

If you have an NSString, and you need to pass it to
a method that does a specific typecheck for str, you can use
str(nsstring) to convert the NSString to
str:

Convert the Objective-C string to a Python string.
>>> str(NSBundle.mainBundle.bundlePath)
'/Users/rkm/projects/beeware/venv3.6/bin'

Conversely, if you have a str, and you specifically require a
NSString, you can use the
at() function to convert the Python instance to an
NSString.

>>> from rubicon.objc import at
Create a Python string
>>> py_str = 'hello world'
Convert to an Objective-C string
>>> at(py_str)
<rubicon.objc.collections.ObjCStrInstance 0x114a94e48: __NSCFString at 0x7fec8ba7fc10: hello world>

NSString also supports all the utility methods that
are available on str, such as replace and split. When these
methods return a string, the implementation may return Python str or
Objective-C NSString instances. If you need to use
the return value from these methods, you should always use str or
at() to ensure that you have the right kind of string
for your needs.

Is the path comprised of all lowercase letters? (Hint: it isn't)
>>> NSBundle.mainBundle.bundlePath.islower()
False

Convert string to lower case; use str() to ensure we get a Python string.
>>> str(NSBundle.mainBundle.bundlePath.lower())
'/users/rkm/projects/beeware/venv3.6/bin'

Note

NSString objects behave slightly differently
than Python str objects in some cases. For technical reasons,
NSStrings are not hashable in Python, which
means they cannot be used as dict keys (but they can be used as
NSDictionary keys). NSString also
handles Unicode code points above U+FFFF differently than Python
str, because the former is based on UTF-16.

Lists

NSArray objects behave like any other Python
sequence - they can be indexed, sliced, etc. and standard operations like
len() and in are supported:

>>> from rubicon.objc import NSArray
>>> array = NSArray.arrayWithArray(list(range(4)))
>>> array[0]
0
>>> array[1:3]
<rubicon.objc.collections.ObjCListInstance 0x10b855208: __NSArrayI at 0x7f86f8e61950: <__NSArrayI 0x7f86f8e61950>(
1,
2
)
>
>>> len(array)
4
>>> 2 in array
True
>>> 5 in array
False

Note

ObjCInstance objects wrapping a
NSArray internally have the class
ObjCListInstance or ObjCMutableListInstance, and you will
see these names in the repr() of NSArray
objects. This is an implementation detail - you should not refer to the
ObjCListInstance and ObjCMutableListInstance classes explicitly in
your code.

NSMutableArray objects additionally support mutating
operations, like item and slice assignment:

>>> from rubicon.objc import NSMutableArray
>>> mutarray = NSMutableArray.arrayWithArray(list(range(4)))
>>> mutarray[0] = 42
>>> mutarray
<rubicon.objc.collections.ObjCMutableListInstance 0x10b8558d0: __NSArrayM at 0x7f86fb04d9f0: <__NSArrayM 0x7f86fb04d9f0>(
42,
1,
2,
3
)
>
>>> mutarray[1:3] = [9, 8, 7]
>>> mutarray
<rubicon.objc.collections.ObjCMutableListInstance 0x10b8558d0: __NSArrayM at 0x7f86fb04d9f0: <__NSArrayM 0x7f86fb04d9f0>(
42,
9,
8,
7,
3
)
>

Sequence methods like index and pop are also supported:

>>> mutarray.index(7)
3
>>> mutarray.pop(3)
7

Note

Python objects stored in an NSArray are
converted to Objective-C objects using the rules described in
Argument conversion.

Dictionaries

NSDictionary objects behave like any other Python
mapping - their items can be accessed and standard operations like len()
and in are supported:

>>> from rubicon.objc import NSDictionary
>>> d = objc.NSDictionary.dictionaryWithDictionary({"one": 1, "two": 2})
>>> d["one"]
1
>>> len(d)
>>> 2
>>> "two" in d
True
>>> "five" in d
False

Note

ObjCInstance objects wrapping a
NSDictionary internally have the class
ObjCDictInstance or ObjCMutableDictInstance, and you will see these
names in the repr() of NSDictionary
objects. This is an implementation detail - you should not refer to the
ObjCDictInstance and ObjCMutableDictInstance classes explicitly in
your code.

NSMutableDictionary objects additionally support
mutating operations, like item assignment:

>>> md = objc.NSMutableDictionary.dictionaryWithDictionary({"one": 1, "two": 2})
>>> md["three"] = 3
>>> md
<rubicon.objc.collections.ObjCMutableDictInstance 0x10b8a7860: __NSDictionaryM at 0x7f86fb164b60: {
 one = 1;
 three = 3;
 two = 2;
}>

Mapping methods like keys and values are also supported:

>>> d.keys()
<rubicon.objc.collections.ObjCListInstance 0x10b898a90: __NSArrayI at 0x7f86f8db6b70: <__NSArrayI 0x7f86f8db6b70>(
one,
two
)
>
>>> d.values()
<rubicon.objc.collections.ObjCListInstance 0x10b8a7b38: __NSArrayI at 0x7f86f8c00370: <__NSArrayI 0x7f86f8c00370>(
1,
2
)
>

Note

Python objects stored in an NSDictionary are
converted to Objective-C objects using the rules described in
Argument conversion.

Manual conversions

If necessary, you can also manually call Rubicon’s type conversion functions, to convert objects between Python and Objective-C when Rubicon doesn’t do so automatically.

Converting from Python to Objective-C

The function ns_from_py() (also available as at() for short) can convert most standard Python objects to Foundation equivalents. For a full list of possible conversions, see the reference documentation for ns_from_py().

These conversions are performed automatically when a Python object is passed into an Objective-C method parameter that expects an object - in that case you do not need to call ns_from_py() manually (see Argument conversion).

Converting from Objective-C to Python

The function py_from_ns() can convert many common Foundation objects to Python equivalents. For a full list of possible conversions, see the reference documentation for py_from_ns().

These conversions are not performed automatically by Rubicon. For example, if an Objective-C method returns an NSString, Rubicon will return it as an ObjCInstance (with some additional Python methods - see Python-style APIs and methods for Objective-C objects). Using py_from_ns(), you can convert the NSString to a real Python str.

When converting collections, such as NSArray or NSDictionary, py_from_ns() will convert them recursively to a pure Python object. For example, if nsarray is an NSArray containing NSStrings, py_from_ns(nsarray) will return a list of strs. In most cases, that is the desired behavior, but you can also avoid this recursive conversion by passing the Foundation collection into a Python collection constructor: for example list(nsarray) will return a list of NSStrings.

Memory management for Objective-C instances

Reference counting works differently in Objective-C compared to Python. Python
will automatically track where variables are referenced and free memory when
the reference count drops to zero whereas Objective-C uses explicit reference
counting to manage memory. The methods retain, release and
autorelease are used to increase and decrease the reference counts as
described in the Apple developer documentation [https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/MemoryMgmt/Articles/MemoryMgmt.html].
When enabling automatic reference counting (ARC), the appropriate calls for
memory management will be inserted for you at compile-time. However, since
Rubicon Objective-C operates at runtime, it cannot make use of ARC.

Reference counting in Rubicon Objective-C

You won’t have to manage reference counts in Python, Rubicon Objective-C will
do that work for you. It does so by tracking when you gain ownership of an
object. This is the case when you create an Objective-C instance using a method
whose name begins with “alloc”, “new”, “copy”, or “mutableCopy”. Rubicon
Objective-C will then insert a release call when the Python variable that
corresponds to the Objective-C instance is deallocated.

An exception to this is when you manually retain an object. Rubicon
Objective-C will not keep track of such retain calls and you will be
responsible to insert appropriate release calls yourself.

You will also need to pay attention to reference counting in case of weak
references. In Objective-C, creating a weak reference means that the
reference count of the object is not incremented and the object will still be
deallocated when no strong references remain. Any weak references to the object
are then set to nil.

Some objects will store references to other objects as a weak reference. Such
properties will be declared in the Apple developer documentation as
“@property(weak)” or “@property(assign)”. This is commonly the case for
delegates. For example, in the code below, the NSOutlineView only stores a
weak reference to the object which is assigned to its delegate property:

from rubicon.objc import NSObject, ObjCClass
from rubicon.objc.runtime import load_library

app_kit = load_library("AppKit")
NSOutlineView = ObjCClass("NSOutlineView")

outline_view = NSOutlineView.alloc().init()
delegate = NSObject.alloc().init()

outline_view.delegate = delegate

You will need to keep a reference to the Python variable delegate so that
the corresponding Objective-C instance does not get deallocated.

Reference cycles in Objective-C

Python has a garbage collector which detects references cycles and frees
objects in such cycles if no other references remain. Cyclical references can
be useful in a number of cases, for instance to refer to a “parent” of an
instance, and Python makes life easier by properly freeing such references. For
example:

class TreeNode:
 def __init__(self, val):
 self.val = val
 self.parent = None
 self.children = []

root = TreeNode("/home")

child = TreeNode("/Documents")
child.parent = root

root.children.append(child)

This will free both root and child on
the next garbage collection cycle:
del root
del child

Similar code in Objective-C will lead to memory leaks. This also holds for
Objective-C instances created through Rubicon Objective-C since Python’s
garbage collector is unable to detect reference cycles on the Objective-C side.
If you are writing code which would lead to reference cycles, consider storing
objects as weak references instead. The above code would be written as follows
when using Objective-C classes:

from rubicon.objc import NSObject, NSMutableArray
from rubicon.objc.api import objc_property, objc_method

class TreeNode(NSObject):
 val = objc_property()
 children = objc_property()
 parent = objc_property(weak=True)

 @objc_method
 def initWithValue_(self, val):
 self.val = val
 self.children = NSMutableArray.new()
 return self

root = TreeNode.alloc().initWithValue("/home")

child = TreeNode.alloc().initWithValue("/Documents")
child.parent = root

root.children.addObject(child)

This will free both root and child:
del root
del child

Using and creating Objective-C protocols

Protocols are used in Objective-C to declare a set of methods and properties
for a class to implement. They have a similar purpose to ABCs (abstract base
classes) in Python.

Looking up a protocol

Protocol objects can be looked up using the ObjCProtocol constructor,
similar to how classes can be looked up using ObjCClass:

>>> NSCopying = ObjCProtocol('NSCopying')
>>> NSCopying
<rubicon.objc.api.ObjCProtocol: NSCopying at 0x7fff76543210>

The isinstance function can be used to check whether an object conforms to
a protocol:

>>> isinstance(NSObject.new(), NSCopying)
False
>>> isinstance(NSArray.array(), NSCopying)
True

Implementing a protocol

When writing a custom Objective-C class, you might want to have it conform to
one or multiple protocols. In Rubicon, this is done by using the protocols
keyword argument in the base class list. For example, if you have a class
UserAccount and want it to conform to NSCopyable, you would write it
like this:

class UserAccount(NSObject, protocols=[NSCopying]):
 username = objc_property()
 emailAddress = objc_property()

 @objc_method
 def initWithUsername_emailAddress_(self, username, emailAddress):
 self = self.init()
 if self is None:
 return None
 self.username = username
 self.emailAddress = emailAddress
 return self

 # This method is required by NSCopying.
 # The "zone" parameter is obsolete and can be ignored, but must be included for backwards compatibility.
 # This method is not normally used directly. Usually you call the copy method instead,
 # which calls copyWithZone: internally.
 @objc_method
 def copyWithZone_(self, zone):
 return UserAccount.alloc().initWithUsername(self.username, emailAddress=self.emailAddress)

We can now use our class. The copy method (which uses our implemented
copyWithZone: method) can also be used:

>>> ua = UserAccount.alloc().initWithUsername_emailAddress_(at('person'), at('person@example.com'))
>>> ua
<rubicon.objc.api.ObjCInstance 0x106543210: UserAccount at 0x106543220: <UserAccount: 0x106543220>>
>>> ua.copy()
<rubicon.objc.api.ObjCInstance 0x106543210: UserAccount at 0x106543220: <UserAccount: 0x106543220>>

And we can check that the class conforms to the protocol:

>>> isinstance(ua, NSCopying)
True

Writing custom protocols

You can also create custom protocols. This works similarly to creating custom
Objective-C classes:

class Named(metaclass=ObjCProtocol):
 name = objc_property()

 @objc_method
 def sayName(self):
 ...

There are two notable differences between creating classes and protocols:

1. Protocols do not need to extend exactly one other protocol - they can also
extend multiple protocols, or none at all. When not extending other protocols,
as is the case here, we need to explicitly add metaclass=ObjCProtocol to
the base class list, to tell Python that this is a protocol and not a regular
Python class. When extending other protocols, Python detects this
automatically.
2. Protocol methods do not have a body. Python has no dedicated syntax for
functions without a body, so we put ... in the body instead. (You could
technically put code in the body, but this would be misleading and is not
recommended.)

Asynchronous Programming with Rubicon

One of the banner features of Python 3 is the introduction of native
asychronous programming, implemented in the asyncio.

For an introduction to the use of asynchronous programming, see the
documentation for the asyncio module [https://docs.python.org/3/library/asyncio.html], or this introductory
tutorial to asynchronous programming with asyncio [http://asyncio.readthedocs.io/en/latest/index.html].

Integrating asyncio with CoreFoundation

The asyncio module provides an event loop to coordinate asynchronous features.
However, if you’re running an Objective C GUI applicaiton, you probably
already have an event loop - the one provided by CoreFoundation. This
CoreFoundation event loop is then wrapped by NSApplication or
UIApplication in end-user code.

However, you can’t have two event loops running at the same time, so you need
a way to integrate the two. Luckily, asyncio provides a way to customize
it’s event loop so it can be integrated with other event sources.

It does this using an Event Loop Policy. Rubicon provides an Core Foundation
Event Loop Policy that inserts Core Foundation event handling into the asyncio
event loop.

To use asyncio in a pure Core Foundation application, do the following:

Import the Event Loop Policy
from rubicon.objc.eventloop import EventLoopPolicy

Install the event loop policy
asyncio.set_event_loop_policy(EventLoopPolicy())

Get an event loop, and run it!
loop = asyncio.get_event_loop()
loop.run_forever()

The last call (loop.run_forever()) will, as the name suggests, run forever
- or, at least, until an event handler calls loop.stop() to terminate the
event loop.

Integrating asyncio with AppKit and NSApplication

If you’re using AppKit and NSApplication, you don’t just need to start the
CoreFoundation event loop - you need to start the full NSApplication
lifecycle. To do this, you pass the application instance into the call to
loop.run_forever():

Import the Event Loop Policy and lifecycle
from rubicon.objc.eventloop import EventLoopPolicy, CocoaLifecycle

Install the event loop policy
asyncio.set_event_loop_policy(EventLoopPolicy())

Get a handle to the shared NSApplication
from ctypes import cdll, util
from rubicon.objc import ObjCClass

appkit = cdll.LoadLibrary(util.find_library('AppKit'))
NSApplication = ObjCClass('NSApplication')
NSApplication.declare_class_property('sharedApplication')
app = NSApplication.sharedApplication

Get an event loop, and run it, using the NSApplication!
loop = asyncio.get_event_loop()
loop.run_forever(lifecycle=CocoaLifecycle(app))

Again, this will run “forever” – until either loop.stop() is called, or
terminate: is invoked on the NSApplication.

Integrating asyncio with iOS and UIApplication

If you’re using UIKit and UIApplication on iOS, you need to use the iOS
lifecycle. To do this, you pass an iOSLifecycle object into the call to
loop.run_forever():

Import the Event Loop Policy and lifecycle
from rubicon.objc.eventloop import EventLoopPolicy, iOSLifecycle

Install the event loop policy
asyncio.set_event_loop_policy(EventLoopPolicy())

Get an event loop, and run it, using the NSApplication!
loop = asyncio.get_event_loop()
loop.run_forever(lifecycle=iOSLifecycle())

Again, this will run “forever” – until either loop.stop() is called, or
terminate: is invoked on the NSApplication.

Calling plain C functions from Python

Most Objective-C APIs are exposed through Objective-C classes and methods, but some parts are implemented as plain C functions. You might also want to want to use a pure C library that provides no Objective-C interface at all. Calling C functions is quite different from calling Objective-C methods and requires some additional work, which will be explained in this how-to.

See also

The ctypes tutorial [https://docs.python.org/3/library/ctypes.html#ctypes-tutorial] in the Python documentation, which explains how to call C functions in general (without a specific focus on Apple platforms and Objective-C).

A simple example: puts

We’ll start with a simple example: calling the puts function from the C standard library. puts takes a C string and outputs it to standard output — it’s the C equivalent of a simple print call.

Before we can call the function, we need to look it up first. To do this, we need to find and load the library in which the function is defined. In the case of standard C functions, this is the standard C library, libc. Because this library is commonly used, Rubicon already loads it by default and exposes it in Python as rubicon.objc.runtime.libc.

>>> from rubicon.objc.runtime import libc
>>> libc
<CDLL '/usr/lib/libc.dylib', handle 7fff60d0cb90 at 0x105850b38>

Note

For a list of all C libraries that Rubicon loads and exposes by default, see the C libraries section of the rubicon.objc.runtime reference documentation.

To access a library that is not predefined by Rubicon, you can use the load_library() function:

>>> from rubicon.objc.runtime import load_library
>>> libm = load_library("m")
>>> libm
<CDLL '/usr/lib/libm.dylib', handle 7fff60d0cb90 at 0x10596be10>

C functions are accessed as attributes on their library:

>>> libc.puts
<_FuncPtr object at 0x110178f20>

However, unlike Objective-C methods, we cannot call C functions right away — we must first declare the function’s argument and return types. (Rubicon cannot do this automatically like with Objective-C methods, because plain C doesn’t provide the runtime type information necessary for this.) This type information is found in C header files, in this case stdio.h (which defines standard C input/output functions, including puts).

The exact location of the macOS C headers varies depending on your version of macOS and the developer tools — it is not a fixed path. To open the header directory in the Finder, run the following command in the terminal:

$ open "$(xcrun --show-sdk-path)/usr/include"

Note

This command requires a version of the macOS developer tools to be installed. If you do not have Xcode or the command-line developer tools installed yet, run this command in the terminal to install the command-line developer tools:

$ xcode-select --install

Once you have opened the relevant header file in a text editor, you need to search for the declaration of the function you’re looking for. In the case of puts, it looks like this:

int puts(const char *);

This means that puts returns an int and takes a single argument of type const char * (a pointer to one or more characters, i.e. a C string). This translates to the following Python ctypes code:

>>> from ctypes import c_char_p, c_int
>>> libc.puts.restype = c_int
>>> libc.puts.argtypes = [c_char_p]

Now that we have provided all of the necessary type information, we can call libc.puts.

For the c_char_p argument, we pass a byte string with the message we want to print out. ctypes automatically converts the byte string object to a c_char_p (char *) as the C function expects it. The string specifically needs to be a byte string (bytes), because C’s char * strings are byte-based, unlike normal Python strings (str), which are Unicode-based.

>>> res = libc.puts(b"Hello!")
Hello!

Note

If you’re running this code from an editor or IDE and don’t see Hello! printed out, try running the code from a Python REPL in a terminal window instead. Some editors/IDEs, such as Python’s IDLE, can only capture and display output produced by high-level Python functions (such as print), but not output from low-level C functions (such as puts).

The return value of puts is ignored in this example. It indicates whether or not the call was successful. If puts succeeds, it returns a non-negative integer (the exact value is not significant and has no defined meaning). If puts encounters an error, it returns the EOF constant (on Apple OSes, this is -1).

The puts function generally doesn’t fail, except for edge cases that are unlikely to happen in practice. With most other C functions, you need to be more careful about checking the return value, to make sure that errors from the function call are detected and handled. Unlike in Python, if you forget to check whether a C function call failed, any errors from that call are silently ignored, which often leads to bad behavior or crashes.

Most real examples of C functions are more complicated than puts, but the basic procedure for calling them is the same: import or load the function’s C library, set the function’s return type and argument types based on the relevant header, and then call the function as needed.

Each C library only needs to be imported/loaded once, and the restype and argtypes only need to be set once per function. This is usually done at module level near the beginning of the module, similar to Python imports.

Inline functions (e.g. NSLocationInRange)

Regular C functions can be called as explained above, but there is also a second kind of C function that needs to be handled differently: inline functions. Unlike regular C functions, inline functions cannot be called through a library object at runtime. Instead, their implementation is only provided as source code in a header file.

When an inline function is called from regular C code, the C compiler copies (inlines) the inline function’s implementation into the calling code. To call an inline C function from Python, we need to do the same thing — copy the code from the header into our own code — but in addition we need to translate the C code from the header into equivalent Python/ctypes code.

As an example we will use the function NSLocationInRange from the Foundation framework. This function checks whether an index lies inside a NSRange value. The definition of this function, from the Foundation header NSRange.h, looks like this:

NS_INLINE BOOL NSLocationInRange(NSUInteger loc, NSRange range) {
 return (!(loc < range.location) && (loc - range.location) < range.length) ? YES : NO;
}

In this case, the translation to Python consists (roughly) of the following steps:

	The outer part of the function definition needs to be translated to Python’s def syntax. The return type and argument types can be omitted in the Python code — because Python is dynamically typed, these explicit types are not needed.

	The YES and NO constants in the return expressions need to be replaced with their Python equivalents, True and False.

	Some operators in the return expression need to be changed: C !cond translates to Python not cond, C left && right becomes left and right, and C cond ? true_val : false_val becomes true_val if cond else false_val.

The translated Python code looks like this:

def NSLocationInRange(loc, range):
 return True if (not (loc < range.location) and (loc - range.location) < range.length) else False

You can then put this translated function into your Python code and call it in place of the corresponding C inline function.

Note

Python code translated from C like this is sometimes more complicated than necessary and can be simplified. In this case for example, True if cond else False can be simplified to just cond, not (x < y) can be simplified to x >= y, and a few redundant parentheses can be removed. A cleaner version of the translated code might look like this:

def NSLocationInRange(loc, range):
 return loc >= range.location and loc - range.location < range.length

Global variables and constants (e.g. NSFoundationVersionNumber)

Some C libraries expose not just functions, but also global variables. An example of this is the Foundation framework, which defines the global variable NSFoundationVersionNumber in <Foundation/NSObjCRuntime.h>:

FOUNDATION_EXPORT double NSFoundationVersionNumber;

Like functions, global variables are accessed via the library that they are defined by. The syntax is somewhat different for global variables though - instead of reading them directly as attributes of the library object, you use the in_dll method of the variable’s type. (Every ctypes type has an in_dll method.)

>>> from ctypes import c_double
>>> from rubicon.objc.runtime import Foundation
>>> NSFoundationVersionNumber = c_double.in_dll(Foundation, "NSFoundationVersionNumber")
>>> NSFoundationVersionNumber
c_double(1575.23)

Note that in_dll doesn’t return the variable’s value directly - instead it returns a ctypes data object that has the variable’s type, in this case c_double. To access the variable’s actual value, you can use the data object’s value attribute:

>>> NSFoundationVersionNumber.value
1575.23

Objective-C object constants

A special case of global variables is often found in Objective-C libraries: object constants. These are global Objective-C object variables with a const modifier, meaning that they cannot be modified. Constants of type NSString * are especially common and can be found in many places, such as Foundation’s <Foundation/NSMetadataAttribute.h>:

FOUNDATION_EXPORT NSString * const NSMetadataItemFSNameKey;

Because they are so common, Rubicon provides the convenience function objc_const specifically for accessing Objective-C object constants:

>>> from rubicon.objc import objc_const
>>> from rubicon.objc.runtime import Foundation
>>> NSMetadataItemFSNameKey = objc_const(Foundation, "NSMetadataItemFSNameKey")
>>> NSMetadataItemFSNameKey
<rubicon.objc.collections.ObjCStrInstance 0x10eecf350: __NSCFConstantString at 0x1072a67e8: kMDItemFSName>

Note

Sometimes it’s not obvious that a constant is an Objective-C object, because its actual type is hidden behind a typedef. This is common with the “extensible string enum” pattern, where a set of related string constants are defined together. An example can be found in <Foundation/NSCalendar.h>:

typedef NSString * NSCalendarIdentifier NS_EXTENSIBLE_STRING_ENUM;

FOUNDATION_EXPORT NSCalendarIdentifier const NSCalendarIdentifierGregorian;
FOUNDATION_EXPORT NSCalendarIdentifier const NSCalendarIdentifierBuddhist;
FOUNDATION_EXPORT NSCalendarIdentifier const NSCalendarIdentifierChinese;
// ... many more ...

Even though the constants use the type name NSCalendarIdentifier, their actual type is still NSString *, based on the typedef before.

In some cases, constants use a typedef from a different header (or even a different library) than the one defining the constants, which can make it even harder to tell that they are actually Objective-C objects.

A complex example: dispatch_get_main_queue

As a final example, we’ll look at the function dispatch_get_main_queue from the libdispatch library. This is a very complex function definition, which involves many of the concepts introduced above, as well as heavy use of C preprocessor macros. If you don’t have a lot of experience with the C preprocessor, you may want to skip this section.

First, we need to look at the function’s definition, which is found in the header <dispatch/queue.h>:

DISPATCH_INLINE DISPATCH_ALWAYS_INLINE DISPATCH_CONST DISPATCH_NOTHROW
dispatch_queue_main_t
dispatch_get_main_queue(void)
{
 return DISPATCH_GLOBAL_OBJECT(dispatch_queue_main_t, _dispatch_main_q);
}

This is an inline function, which you can see based on the fact that it has a function body and the DISPATCH_INLINE/DISPATCH_ALWAYS_INLINE attributes. This means that we cannot look it up directly using ctypes - instead we have to translate the function body from C to Python.

We can ignore the first line of the function definition - they contain function attributes intended for the compiler, which we don’t need. The second and third line indicate the function’s signature - it takes no arguments and returns a value of type dispatch_queue_main_t.

The body is a little more complex: it uses DISPATCH_GLOBAL_OBJECT, which is actually a C macro. Its definition can be found in <dispatch/object.h>:

#define DISPATCH_GLOBAL_OBJECT(type, object) ((OS_OBJECT_BRIDGE type)&(object))

If we substitute the macro’s parameters (type and object) for their real values in our case (dispatch_queue_main_t and _dispatch_main_q), we get the expression ((OS_OBJECT_BRIDGE dispatch_queue_main_t)&(_dispatch_main_q)). OS_OBJECT_BRIDGE is also a macro, this time from <os/object.h>:

#define OS_OBJECT_BRIDGE __bridge

It expands to __bridge, which is an attribute related to Objective-C’s automatic reference counting (ARC) feature. In the context of Rubicon, ARC is not relevant (Rubicon performs its own reference management for Objective-C objects), so we can ignore this attribute. This leaves us with the expression ((dispatch_queue_main_t)&(_dispatch_main_q)), which we can substitute for the macro call in our original function:

dispatch_queue_main_t
dispatch_get_main_queue(void)
{
 return (dispatch_queue_main_t)&(_dispatch_main_q));
}

With the macro expansion done, we can now see what the function does: it takes a pointer to the global variable _dispatch_main_q and casts it to the type dispatch_queue_main_t.

First, let’s look at the definition of the _dispatch_main_q variable, from <dispatch/queue.h>:

DISPATCH_EXPORT
struct dispatch_queue_s _dispatch_main_q;

The variable’s type, struct dispatch_queue_s, is an opaque structure type - it is not defined in any public header. This means that we don’t know what fields the structure has, or even how large it is. As a result, we cannot perform any operations on the structure itself, but we can work with pointers to the structure - which is exactly what dispatch_get_main_queue does.

Even though struct dispatch_queue_s is opaque, we still need to define it in Python so that we can look up the _dispatch_main_q variable:

from ctypes import Structure
from rubicon.objc.runtime import load_library

On Mac, libdispatch is part of libSystem.
libSystem = load_library("System")
libdispatch = libSystem

class struct_dispatch_queue_s(Structure):
 pass # No _fields_, because this is an opaque structure.

_dispatch_main_q = struct_dispatch_queue_s.in_dll(libdispatch, "_dispatch_main_q")

Now we need to look at the definition of the dispatch_queue_main_t type. This definition is not very obvious to find - it’s actually this line in <dispatch/queue.h>:

DISPATCH_DECL_SUBCLASS(dispatch_queue_main, dispatch_queue_serial);

DISPATCH_DECL_SUBCLASS is a macro from <dispatch/object.h>, defined like this:

#define DISPATCH_DECL_SUBCLASS(name, base) OS_OBJECT_DECL_SUBCLASS(name, base)

It directly calls another macro, OS_OBJECT_DECL_SUBCLASS, defined in <os/object.h>:

#define OS_OBJECT_DECL_SUBCLASS(name, super) \
 OS_OBJECT_DECL_IMPL(name, <OS_OBJECT_CLASS(super)>)

Let’s substitute this macro into our original code:

OS_OBJECT_DECL_IMPL(dispatch_queue_main, <OS_OBJECT_CLASS(dispatch_queue_serial)>);

Next is the OS_OBJECT_DECL_IMPL macro, also defined in <os/object.h>:

#define OS_OBJECT_DECL_IMPL(name, ...) \
 OS_OBJECT_DECL_PROTOCOL(name, __VA_ARGS__) \
 typedef NSObject<OS_OBJECT_CLASS(name)> \
 * OS_OBJC_INDEPENDENT_CLASS name##_t

After we substitute this macro into our code, it looks like this:

OS_OBJECT_DECL_PROTOCOL(dispatch_queue_main, <OS_OBJECT_CLASS(dispatch_queue_serial)>) \
typedef NSObject<OS_OBJECT_CLASS(dispatch_queue_main)> \
 * OS_OBJC_INDEPENDENT_CLASS dispatch_queue_main_t;

And another macro, OS_OBJECT_DECL_PROTOCOL, also from <os/object.h>:

#define OS_OBJECT_DECL_PROTOCOL(name, ...) \
 @protocol OS_OBJECT_CLASS(name) __VA_ARGS__ \
 @end

Which we can substitute into our code:

@protocol OS_OBJECT_CLASS(dispatch_queue_main) <OS_OBJECT_CLASS(dispatch_queue_serial)> \
@end \
typedef NSObject<OS_OBJECT_CLASS(dispatch_queue_main)> \
 * OS_OBJC_INDEPENDENT_CLASS dispatch_queue_main_t;

Now let’s take care of the OS_OBJECT_CLASS macro, defined like this in <os/object.h>:

#define OS_OBJECT_CLASS(name) OS_##name

And substituted into our code:

@protocol OS_dispatch_queue_main <OS_dispatch_queue_serial> \
@end \
typedef NSObject<OS_dispatch_queue_main> \
 * OS_OBJC_INDEPENDENT_CLASS dispatch_queue_main_t;

Finally we’re left with the OS_OBJECT_INDEPENDENT_CLASS macro, which is a compiler attribute that we can ignore.

@protocol OS_dispatch_queue_main <OS_dispatch_queue_serial>
@end
typedef NSObject<OS_dispatch_queue_main> * dispatch_queue_main_t;

Now we’re done with macro expansion and can see what the code actually does - it defines an Objective-C protocol called OS_dispatch_queue_main and defines dispatch_queue_main_t as a pointer type to an object conforming to that protocol. For our purposes, most of these details don’t matter - the important part is that dispatch_queue_main_t is actually an Objective-C object pointer type. Because Rubicon doesn’t differentiate between object pointer types, we can replace dispatch_queue_main_t in our original function with the generic id type:

id
dispatch_get_main_queue(void)
{
 return (id)&(_dispatch_main_q));
}

This code can finally be translated to Python:

from ctypes import byref, cast
from rubicon.objc import ObjCInstance
from rubicon.objc.runtime import objc_id

This requires the _dispatch_main_q Python code from before.

def dispatch_get_main_queue():
 return ObjCInstance(cast(byref(_dispatch_main_q), objc_id))

Further information

	cdecl.org [https://cdecl.org/]: An online service to translate C type syntax into more understandable English.

	cppreference.com [https://en.cppreference.com/]: A reference site about the standard C and C++ languages and libraries.

	Apple’s reference documentation [https://developer.apple.com/documentation/]: Official API documentation for Apple platforms. Make sure to change the language to Objective-C in the top-right corner, otherwise you’ll get Swift documentation, which can differ significantly from Objective-C.

	macOS man pages, sections 2 and 3: Documentation for the C functions provided by macOS. View these using the man command, or by typing a function name into the search box of the macOS Terminal’s Help menu.

How to contribute code to Rubicon

If you experience problems with Rubicon, log them on GitHub [https://github.com/beeware/rubicon-objc/issues]. If you want
to contribute code, please fork the code [https://github.com/beeware/rubicon-objc] and submit a pull request [https://github.com/beeware/rubicon-objc/pulls].

Set up your development environment

The recommended way of setting up your development environment for Rubicon is
to clone the repository, create a virtual environment, and install the required
dependencies:

$ git clone https://github.com/beeware/rubicon-objc.git
$ cd rubicon-objc
$ python3 -m venv venv
$ source venv/bin/activate
(venv) $ pip install --upgrade pip
(venv) $ pip install --upgrade setuptools
(venv) $ pip install tox
(venv) $ pip install -e .

You can then run the full test suite:

(venv) $ tox

By default this will run the test suite multiple times, once on each Python
version supported by Rubicon, as well as running some pre-commit checks of
code style and validity. This can take a while, so if you want to speed up
the process while developing, you can run the tests on one Python version only:

(venv) $ tox -e py

Or, to run using a specific version of Python:

(venv) $ tox -e py37

substituting the version number that you want to target. You can also specify
one of the pre-commit checks flake8, docs or package to check code
formatting, documentation syntax and packaging metadata, respectively.

Now you are ready to start hacking on Rubicon. Have fun!

Contributing to the documentation

Here are some tips for working on this documentation. You’re welcome to add
more and help us out!

First of all, you should check the Restructured Text (reST) and Sphinx
CheatSheet [http://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html] to
learn how to write your .rst file.

Create a .rst file

Look at the structure and choose the best category to put your .rst file. Make
sure that it is referenced in the index of the corresponding category, so it
will show on in the documentation. If you have no idea how to do this, study
the other index files for clues.

Build documentation locally

To build the documentation locally, set up a development environment, and run:

$ tox -e docs

The output of the file should be in the build/sphinx/html folder. If there are
any markup problems, they’ll raise an error.

Internal How-to guides

These guides are for the maintainers of the Rubicon-ObjC project, documenting
internal project procedures.

	How to cut a Rubicon-ObjC release

How to cut a Rubicon-ObjC release

The release infrastructure for Rubicon is semi-automated, using GitHub Actions
to formally publish releases.

This guide assumes that you have an upstream remote configured on your
local clone of the Rubicon repository, pointing at the official repository. If
all you have is a checkout of a personal fork of the Rubicon-ObjC repository,
you can configure that checkout by running:

$ git remote add upstream https://github.com/beeware/rubicon-objc.git

The procedure for cutting a new release is as follows:

	Check the contents of the upstream repository’s master branch:

$ git fetch upstream
$ git checkout --detach upstream/master

Check that the HEAD of release now matches upstream/master.

	Make sure the branch is ready for release. Ensure that:

	The version number has been bumped.

	The release notes are up to date. If they are, the changes [https://github.com/beeware/rubicon-objc/tree/master/changes] directory
should be empty, except for the template.rst file.

These two changes (the version bump and release notes update) should go
through the normal pull request and review process. They should generally
comprise the last PR merged before the release occurs.

If the version number hasn’t been updated, or changes directory
isn’t empty, you need to create a PR (using the normal development
process) that contains these changes. Run:

$ tox -e towncrier -- --draft

to review the release notes that will be included, and then:

$ tox -e towncrier

to generate the updated release notes. Submit the PR; once it’s been
reviewed and merged, you can restart the release process from step 1.

	Tag the release, and push the tag upstream:

$ git tag v1.2.3
$ git push upstream v1.2.3

	Pushing the tag will start a workflow to create a draft release on GitHub.
You can follow the progress of the workflow on GitHub [https://github.com/beeware/rubicon-objc/actions?query=workflow%3A%22Create+Release%22];
once the workflow completes, there should be a new draft release [https://github.com/beeware/rubicon-objc/releases].

	Edit the GitHub release. Add release notes (you can use the text generated
by towncrier). Check the pre-release checkbox (if necessary).

	Double check everything, then click Publish. This will trigger a
publication workflow on GitHub [https://github.com/beeware/rubicon-objc/actions?query=workflow%3A%22Upload+Python+Package%22].

7. Wait for the package to appear on PyPI [https://pypi.org/project/rubicon-objc/].

Congratulations, you’ve just published a release!

If anything went wrong during steps 3 or 5, you will need to delete the draft
release from GitHub, and push an updated tag. Once the release has successfully
appeared on PyPI, it cannot be changed; if you spot a problem in a published
package, you’ll need to tag a completely new release.

Background

Want to know more about the Rubicon project, it’s history, community, and
plans for the future? That’s what you’ll find here!

	Why “Rubicon”?

	The Rubicon Objective-C Developer and User community

	Success Stories

	Release History

	Rubicon Roadmap

Why “Rubicon”?

So… why the name Rubicon?

The Rubicon is a river in Italy. It was of importance in ancient times as the
border of Rome. The Roman Army was prohibited from crossing this border, as that
would be considered a hostile act against the Roman Senate.

In 54 BC, Julius Caesar marched the Roman Army across the Rubicon, signaling
his intention to overthrow the Roman Senate. As he did so, legend says he
uttered the words “Alea Iacta Est” - The die is cast. This action led to Julius
being crowned as Emperor of Rome, and the start of the Roman Empire.

Of course, in order to cross any river, you need to use a bridge.

This project provides a bridge between the open world of the Python
ecosystem, and the walled garden of Apple’s Objective-C ecosystem.

The Rubicon Objective-C Developer and User community

Rubicon Objective-C is part of the BeeWare suite [https://beeware.org]. You
can talk to the community through:

	@pybeeware on Twitter [https://twitter.com/pybeeware]

	The beeware/general [https://gitter.im/beeware/general] channel on Gitter.

Code of Conduct

The BeeWare community has a strict Code of Conduct [https://beeware.org/contributing/index.html]. All users and developers are
expected to adhere to this code.

If you have any concerns about this code of conduct, or you wish to report a
violation of this code, please contact the project founder Russell Keith-Magee.

Contributing

If you experience problems with Rubicon, log them on GitHub [https://github.com/beeware/rubicon-objc/issues]. If you want to contribute
code, please fork the code [https://github.com/beeware/rubicon-objc] and
submit a pull request [https://github.com/beeware/rubicon-objc/pulls].

Success Stories

Want to see examples of Rubicon in use? Here’s some:

	Travel Tips [https://itunes.apple.com/au/app/travel-tips/id1336372310] is an app in the iOS App Store that uses Rubicon to access the iOS UIKit libraries.

Release History

0.4.2 (2021-11-14)

Features

	Added autoreleasepool context manager to mimic Objective-C
@autoreleasepool blocks. (#213 [https://github.com/beeware/rubicon-objc/issues/213])

	Allow storing Python objects in Objective-C properties declared with
@objc_property. (#214 [https://github.com/beeware/rubicon-objc/issues/214])

	Added support for Python 3.10. (#218 [https://github.com/beeware/rubicon-objc/issues/218])

Bugfixes

	Raise TypeError when trying to declare a weak property of a non-object
type. (#215 [https://github.com/beeware/rubicon-objc/issues/215])

	Corrected handling of methods when a class overrides a method defined in a
grandparent. (#216 [https://github.com/beeware/rubicon-objc/issues/216])

0.4.1 (2021-07-25)

Features

	Added official support for Python 3.9. (#193 [https://github.com/beeware/rubicon-objc/issues/193])

	Added official support for macOS 11 (Big Sur). (#195 [https://github.com/beeware/rubicon-objc/issues/195])

	Autorelease Objective-C instances when the corresponding Python instance is
destroyed. (#200 [https://github.com/beeware/rubicon-objc/issues/200])

	Improved memory management when a Python instance is assigned to a new
ObjCInstance attribute. (#209 [https://github.com/beeware/rubicon-objc/issues/209])

	Added support to declare weak properties on custom Objective-C classes. (#210 [https://github.com/beeware/rubicon-objc/issues/210])

Bugfixes

	Fixed incorrect behavior of Block when trying to
create a block with no arguments and using explicit types. This previously
caused an incorrect exception about missing argument types; now a no-arg block
is created as expected. (#153 [https://github.com/beeware/rubicon-objc/issues/153])

	Fixed handling of type annotations when passing a bound Python method into
Block. (#153 [https://github.com/beeware/rubicon-objc/issues/153])

	A cooperative entry point for starting event loop has been added. This corrects
a problem seen when using Python 3.8 on iOS. (#182 [https://github.com/beeware/rubicon-objc/issues/182])

	Improved performance of Objective-C method calls and
ObjCInstance creation in many cases. (#183 [https://github.com/beeware/rubicon-objc/issues/183])

	Fix calling of signal handlers added to the asyncio loop with CFRunLoop
integration. (#202 [https://github.com/beeware/rubicon-objc/issues/202])

	Allow restarting a stopped event loop. (#205 [https://github.com/beeware/rubicon-objc/issues/205])

Deprecations and Removals

	Removed automatic conversion of Objective-C numbers (NSNumber and
NSDecimalNumber) to Python numbers when received from Objective-C (i.e.
returned from an Objective-C method or property or passed into an Objective-C
method implemented in Python). This automatic conversion significantly slowed
down every Objective-C method call that returns an object, even though the
conversion doesn’t apply to most method calls. If you have code that receives
an Objective-C number and needs to use it as a Python number, please convert
it explicitly using py_from_ns() or an appropriate
Objective-C method.

As a side effect, NSNumber and NSDecimalNumber values stored in
Objective-C collections (NSArray, NSDictionary) are also no longer
automatically unwrapped when retrieved from the collection, even when using
Python syntax to access the collection. For example, if arr is a
NSArray of integer NSNumber, arr[0] now returns an Objective-C
NSNumber and not a Python int as before. If you need the contents of
an Objective-C collection as Python values, you can use
py_from_ns() to convert either single values (e. g.
py_from_ns(arr[0])) or the entire collection (e. g. py_from_ns(arr)).
(#183 [https://github.com/beeware/rubicon-objc/issues/183])

	Removed macOS 10.12 through 10.14 from our automatic test matrix,
due to pricing changes in one of our CI services (Travis CI).
OS X 10.11 is still included in the test matrix for now,
but will probably be removed relatively soon.
Automatic tests on macOS 10.15 and 11.0 are unaffected
as they run on a different CI service (GitHub Actions).

Rubicon will continue to support macOS 10.14 and earlier on a best-effort
basis, even though compatibility is no longer tested automatically. If you
encounter any bugs or other problems with Rubicon on these older macOS
versions, please report them! (#197 [https://github.com/beeware/rubicon-objc/issues/197])

Misc

	#185 [https://github.com/beeware/rubicon-objc/issues/185],
#189 [https://github.com/beeware/rubicon-objc/issues/189],
#194 [https://github.com/beeware/rubicon-objc/issues/194],
#196 [https://github.com/beeware/rubicon-objc/issues/196],
#208 [https://github.com/beeware/rubicon-objc/issues/208]

0.4.0 (2020-07-04)

Features

	Added macOS 10.15 (Catalina) to the test matrix.
(#145 [https://github.com/beeware/rubicon-objc/issues/145])

	Added PEP 517 [https://peps.python.org/pep-0517/] and PEP 518 [https://peps.python.org/pep-0518/] build system metadata to pyproject.toml.
(#156 [https://github.com/beeware/rubicon-objc/issues/156])

	Added official support for Python 3.8.
(#162 [https://github.com/beeware/rubicon-objc/issues/162])

	Added a varargs keyword argument to
send_message() to allow calling variadic methods
more safely. (#174 [https://github.com/beeware/rubicon-objc/issues/174])

	Changed ObjCMethod to call methods using
send_message() instead of calling
IMPs directly. This is mainly an internal
change and should not affect most existing code, although it may improve
compatibility with Objective-C code that makes heavy use of runtime
reflection and method manipulation (such as swizzling).
(#177 [https://github.com/beeware/rubicon-objc/issues/177])

Bugfixes

	Fixed Objective-C method calls in “flat” syntax accepting more arguments than
the method has. The extra arguments were previously silently ignored.
An exception is now raised if too many arguments are passed.
(#123 [https://github.com/beeware/rubicon-objc/issues/123])

	Fixed ObjCInstance.__str__
throwing an exception if the object’s Objective-C description is nil.
(#125 [https://github.com/beeware/rubicon-objc/issues/125])

	Corrected a slow memory leak caused every time an asyncio timed event handler
triggered. (#146 [https://github.com/beeware/rubicon-objc/issues/146])

	Fixed various minor issues in the build and packaging metadata.
(#156 [https://github.com/beeware/rubicon-objc/issues/156])

	Removed unit test that attempted to pass a struct with bit fields into a C
function by value. Although this has worked in the past on x86 and x86_64,
ctypes never officially supported this, and started generating an
error in Python 3.7.6 and 3.8.1
(see bpo-39295 [https://bugs.python.org/issue39295]).
(#157 [https://github.com/beeware/rubicon-objc/issues/157])

	Corrected the invocation of NSApplication.terminate() when the
CocoaLifecycle is ended.
(#170 [https://github.com/beeware/rubicon-objc/issues/170])

	Fixed send_message() not accepting
SEL objects for the selector parameter.
The documentation stated that this is allowed, but actually doing so caused
a type error. (#177 [https://github.com/beeware/rubicon-objc/issues/177])

Improved Documentation

	Added detailed reference documentation for all
public APIs of rubicon.objc.
(#118 [https://github.com/beeware/rubicon-objc/issues/118])

	Added a how-to guide for calling regular C functions using ctypes and rubicon.objc.
(#147 [https://github.com/beeware/rubicon-objc/issues/147])

Deprecations and Removals

	Removed the i386 architecture from the test matrix. It is still supported on
a best-effort basis, but compatibility is not tested automatically.
(#139 [https://github.com/beeware/rubicon-objc/issues/139])

	Tightened the API of send_message(), removing
some previously allowed shortcuts and features that were rarely used, or
likely to be used by accident in an unsafe way.

Note

In most cases, Rubicon’s high-level method call syntax provided by
ObjCInstance can be used instead of
send_message(). This syntax is almost always
more convenient to use, more readable and less error-prone.
send_message() should only be used in cases
not supported by the high-level syntax.

	Disallowed passing class names as str/bytes as the
receiver argument of send_message(). If you
need to send a message to a class object (i. e. call a class method), use
ObjCClass or
get_class() to look up the class, and pass the
resulting ObjCClass or
Class object as the receiver.

	Disallowed passing c_void_p objects as the receiver
argument of send_message(). The receiver
argument now has to be of type objc_id, or
one of its subclasses (such as Class), or one
of its high-level equivalents
(such as ObjCInstance). All Objective-C objects
returned by Rubicon’s high-level and low-level APIs have one of these types.
If you need to send a message to an object pointer stored as
c_void_p, cast() it to
objc_id first.

	Removed default values for send_message()’s
restype and argtypes keyword arguments. Every
send_message() call now needs to have its return
and argument types set explicitly. This ensures that all arguments and the
return value are converted correctly between (Objective-)C and Python.

	Disallowed passing more argument values than there are argument types in
argtypes. This was previously allowed to support calling variadic methods
- any arguments beyond the types set in argtypes would be passed as
varargs. However, this feature was easy to misuse by accident, as it allowed
passing extra arguments to any method, even though most Objective-C methods
are not variadic. Extra arguments passed this way were silently ignored
without causing an error or a crash.

To prevent accidentally passing too many arguments like this, the number of
arguments now has to exactly match the number of argtypes. Variadic
methods can still be called, but the varargs now need to be passed as a list
into the separate varargs keyword arugment.
(#174 [https://github.com/beeware/rubicon-objc/issues/174])

	Removed the rubicon.objc.core_foundation module. This was an internal
module with few remaining contents and should not have any external uses. If
you need to call Core Foundation functions in your code, please load the
framework yourself using load_library('CoreFoundation') and define the
types and functions that you need.
(#175 [https://github.com/beeware/rubicon-objc/issues/175])

	Removed the ObjCMethod class from the public API, as there was no good
way to use it from external code.
(#177 [https://github.com/beeware/rubicon-objc/issues/177])

Misc

	#143 [https://github.com/beeware/rubicon-objc/issues/143],
#145 [https://github.com/beeware/rubicon-objc/issues/145],
#155 [https://github.com/beeware/rubicon-objc/issues/155],
#158 [https://github.com/beeware/rubicon-objc/issues/158],
#159 [https://github.com/beeware/rubicon-objc/issues/159],
#164 [https://github.com/beeware/rubicon-objc/issues/164],
#173 [https://github.com/beeware/rubicon-objc/issues/173],
#178 [https://github.com/beeware/rubicon-objc/issues/178],
#179 [https://github.com/beeware/rubicon-objc/issues/179]

0.3.1

	Added a workaround for bpo-36880 [https://bugs.python.org/issue36880],
which caused a “deallocating None” crash when returning structs from methods
very often.

	Added macOS High Sierra (10.13) and macOS Mojave (10.14) to the test matrix.

	Renamed the rubicon.objc.async module to rubicon.objc.eventloop to
avoid conflicts with the Python 3.6 async keyword.

	Removed support for Python 3.4.

	Removed OS X Yosemite (10.10) from the test matrix. This version is (and
older ones are) still supported on a best-effort basis, but compatibility is
not tested automatically.

0.3.0

	Added Pythonic operators and methods on NSString objects, similar to
those for NSArray and NSDictionary.

	Removed automatic conversion of NSString objects to str when returned
from Objective-C methods. This feature made it difficult to call Objective-C
methods on NSString objects, because there was no easy way to prevent the
automatic conversion.

In most cases, this change will not affect existing code, because
NSString objects now support operations similar to str. If an actual
str object is required, the NSString object can be wrapped in a
str call to convert it.

	Added support for objc_propertys with non-object types.

	Added public get_ivar and set_ivar functions for manipulating ivars.

	Changed the implementation of objc_property to use ivars instead of
Python attributes for storage. This fixes name conflicts in some situations.

	Added the load_library() function for loading
CDLLs by their name instead of their full path.

	Split the high-level Rubicon API (ObjCInstance, ObjCClass,
etc.) out of rubicon.objc.runtime into a separate
rubicon.objc.api module. The runtime module now
only contains low-level runtime interfaces like
libobjc.

This is mostly an internal change, existing code will not be affected unless
it imports names directly from rubicon.objc.runtime.

	Moved c_ptrdiff_t from
rubicon.objc.runtime to rubicon.objc.types.

	Removed some rarely used names (IMP,
Class, Ivar,
Method, get_ivar(),
objc_id,
objc_property_t,
set_ivar()) from the main
rubicon.objc namespace.

If needed, these names can be imported explicitly from the
rubicon.objc.runtime module.

	Fixed objc_property setters on non-macOS platforms. (cculianu)

	Fixed various bugs in the collection ObjCInstance subclasses:

	Fixed getting/setting/deleting items or slices with indices lower than
-len(obj). Previously this crashed Python, now an IndexError is
raised.

	Fixed slices with step size 0. Previously they were ignored and 1 was
incorrectly used as the step size, now an IndexError is raised.

	Fixed equality checks between Objective-C arrays/dictionaries and
non-sequence/mapping objects. Previously this incorrectly raised a
TypeError, now it returns False.

	Fixed equality checks between Objective-C arrays and sequences of different
lengths. Previously this incorrectly returned True if the shorter sequence
was a prefix of the longer one, now False is returned.

	Fixed calling popitem on an empty Objective-C dictionary. Previously
this crashed Python, now a KeyError is raised.

	Fixed calling update with both a mapping and keyword arguments on an
Objective-C dictionary. Previously the kwargs were incorrectly ignored if a
mapping was given, now both are respected.

	Fixed calling methods using kwarg syntax if a superclass and subclass define
methods with the same prefix, but different names. For example, if a
superclass had a method initWithFoo:bar: and the subclass
initWithFoo:spam:, the former could not be called on instances of the
subclass.

	Fixed the internal ctypes_patch module so it no longer depends on a
non-public CPython function.

0.2.10

	Rewrote almost all Core Foundation-based functions to use Foundation instead.

	The functions from_value and NSDecimalNumber.from_decimal have
been removed and replaced by ns_from_py.

	The function at is now an alias for ns_from_py.

	The function is_str has been removed. is_str(obj) calls should
be replaced with isinstance(obj, NSString).

	The functions to_list, to_number, to_set, to_str, and
to_value have been removed and replaced by py_from_ns.

	Fixed declare_property not applying to subclasses of the class it was
called on.

	Fixed repr of ObjCBoundMethod when the wrapped method is not an
ObjCMethod.

	Fixed the encodings of NSPoint, NSSize, and NSRect on 32-bit
systems.

	Renamed the async support package to eventloop to avoid a Python 3.5+
keyword clash.

0.2.9

	Improved handling of boolean types.

	Added support for using primitives as object values (e.g, as the key/value in
an NSDictonary).

	Added support for passing Python lists as Objective-C NSArray arguments, and
Python dicts as Objective-C NSDictionary arguments.

	Corrected support to storing strings and other objects as properties on
Python-defined Objective-C classes.

	Added support for creating Objective-C blocks from Python callables. (ojii)

	Added support for returning compound values (structures and unions) from
Objective-C methods defined in Python.

	Added support for creating, extending and conforming to Objective-C protocols.

	Added an objc_const convenience function to look up global Objective-C
object constants in a DLL.

	Added support for registering custom ObjCInstance subclasses to be used
to represent Objective-C objects of specific classes.

	Added support for integrating NSApplication and UIApplication event loops
with Python’s asyncio event loop.

0.2.8

	Added support for using native Python sequence/mapping syntax with
NSArray and NSDictionary. (jeamland)

	Added support for calling Objective-C blocks in Python. (ojii)

	Added functions for declaring custom conversions between Objective-C type
encodings and ctypes types.

	Added functions for splitting and decoding Objective-C method signature
encodings.

	Added automatic conversion of Python sequences to C arrays or structures in
method arguments.

	Extended the Objective-C type encoding decoder to support block types, bit
fields (in structures), typed object pointers, and arbitrary qualifiers. If
unknown pointer, array, struct or union types are encountered, they are
created and registered on the fly.

	Changed the PyObjectEncoding to match the real definition of
PyObject *.

	Fixed the declaration of unichar (was previously c_wchar, is now
c_ushort).

	Removed the get_selector function. Use the SEL constructor instead.

	Removed some runtime function declarations that are deprecated or unlikely to
be useful.

	Removed the encoding constants. Use encoding_for_ctype to get the encoding
of a type.

0.2.7

	(#40) Added the ability to explicitly declare no-attribute methods as
properties. This is to enable a workaround when Apple introduces readonly
properties as a way to access these methods.

0.2.6

	Added a more compact syntax for calling Objective-C methods, using Python
keyword arguments. (The old syntax is still fully supported and will not
be removed; certain method names even require the old syntax.)

	Added a superclass property to ObjCClass.

0.2.5

	Added official support for Python 3.6.

	Added keyword arguments to disable argument and/or return value conversion
when calling an Objective-C method.

	Added support for (NS/UI) EdgeInsets structs. (Longhanks)

	Improved str of Objective-C classes and objects to return the
debugDescription, or for NSStrings, the string value.

	Changed ObjCClass to extend ObjCInstance (in addition to type),
and added an ObjCMetaClass class to represent metaclasses.

	Fixed some issues on non-x86_64 architectures (i386, ARM32, ARM64).

	Fixed example code in README. (Dayof)

	Removed the last of the Python 2 compatibility code.

0.2.4

	Added objc_property function for adding properties to custom Objective-C
subclasses. (Longhanks)

0.2.3

	Removed most Python 2 compatibility code.

0.2.2

	Dropped support for Python 3.3.

	Added conversion of Python enum.Enum objects to their underlying values
when passed to an Objective-C method.

	Added syntax highlighting to example code in README. (stsievert)

	Fixed the setup.py shebang line. (uranusjr)

0.2.1

	Fixed setting of ObjCClass/ObjCInstance attributes that are not
Objective-C properties.

0.2.0

	First beta release.

	Dropped support for Python 2. Python 3 is now required, the minimum tested
version is Python 3.3.

	Added error detection when attempting to create an Objective-C class with a
name that is already in use.

	Added automatic conversion between Python decimal.Decimal and
Objective-C NSDecimal in method arguments and return values.

	Added PyPy to the list of test platforms.

	When subclassing Objective-C classes, the return and argument types of
methods are now specified using Python type annotation syntax and ctypes
types.

	Improved property support.

0.1.3

	Fixed some issues on ARM64 (iOS 64-bit).

0.1.2

	Fixed NSString conversion in a few situations.

	Fixed some issues on iOS and 32-bit platforms.

0.1.1

	Objective-C classes can now be subclassed using Python class syntax, by
using an ObjCClass as the superclass.

	Removed ObjCSubclass, which is made obsolete by the new subclassing
syntax.

0.1.0

	Initial alpha release.

	Objective-C classes and instances can be accessed via ObjCClass and
ObjCInstance.

	Methods can be called on classes and instances with Python method call
syntax.

	Properties can be read and written with Python attribute syntax.

	Method return and argument types are read automatically from the method
type encoding.

	A small number of commonly used structs are supported as return and
argument types.

	Python strings are automatically converted to and from NSString when
passed to or returned from a method.

	Subclasses of Objective-C classes can be created with ObjCSubclass.

Rubicon Roadmap

Reference

	rubicon.objc — The main Rubicon module

	rubicon.objc.api — The high-level Rubicon API

	rubicon.objc.eventloop — Integrating native event loops with asyncio

	rubicon.objc.runtime — Low-level Objective-C runtime access

	rubicon.objc.types — Non-Objective-C types and utilities

This is the technical reference for public APIs provided by Rubicon.

Note that the rubicon.objc package also contains other submodules not documented here. These are for internal use only and not part of the public API; they may change at any time without notice.

rubicon.objc — The main Rubicon module

This is the main namespace of Rubicon-ObjC. Rubicon is structured into multiple submodules of rubicon.objc, and the most commonly used attributes from these submodules are exported via the rubicon.objc module. This means that most users only need to import and use the main rubicon.objc module; the individual submodules only need to be used for attributes that are not also available on rubicon.objc.

Exported Attributes

This is a full list of all attributes exported on the rubicon.objc module. For detailed documentation on these attributes, click the links below to visit the relevant sections of the submodules’ documentation.

From rubicon.objc.api

	
	Block

	NSArray

	NSDictionary

	NSMutableArray

	NSMutableDictionary

	NSObject

	NSObjectProtocol

	ObjCBlock

	ObjCClass

	ObjCInstance

	ObjCMetaClass

	
	ObjCProtocol

	at()

	ns_from_py()

	objc_classmethod()

	objc_const()

	objc_ivar()

	objc_method()

	objc_property()

	objc_rawmethod()

	py_from_ns()

From rubicon.objc.runtime

	
	SEL

	send_message()

	
	send_super()

From rubicon.objc.types

	
	CFIndex

	CFRange

	CGFloat

	CGGlyph

	CGPoint

	CGPointMake()

	CGRect

	CGRectMake()

	CGSize

	CGSizeMake()

	NSEdgeInsets

	NSEdgeInsetsMake()

	NSInteger

	NSMakePoint()

	
	NSMakeRect()

	NSMakeSize()

	NSPoint

	NSRange

	NSRect

	NSSize

	NSTimeInterval

	NSUInteger

	NSZeroPoint

	UIEdgeInsets

	UIEdgeInsetsMake()

	UIEdgeInsetsZero

	UniChar

	unichar

rubicon.objc.api — The high-level Rubicon API

This module contains Rubicon’s main high-level APIs, which allow easy interaction with Objective-C classes and objects using Pythonic syntax.

Nearly all attributes of this module are also available on the main rubicon.objc module, and if possible that module should be used instead of importing rubicon.objc.api directly.

Contents

	rubicon.objc.api — The high-level Rubicon API

	Objective-C objects

	Objective-C classes

	Standard Objective-C and Foundation classes

	Objective-C protocols

	Standard Objective-C and Foundation protocols

	Converting objects between Objective-C and Python

	Creating custom Objective-C classes and protocols

	Defining methods

	Method naming

	Parameter and return types

	Defining properties and ivars

	Objective-C blocks

	Automatic conversion

	Manual conversion

	Defining custom subclasses of ObjCInstance

Objective-C objects

	
class rubicon.objc.api.ObjCInstance(ptr)

	Python wrapper for an Objective-C instance.

The constructor accepts an objc_id or anything that can be cast to one,
such as a c_void_p, or an existing ObjCInstance.

ObjCInstance objects are cached — this means that for every Objective-C object
there can be at most one ObjCInstance object at any time. Rubicon will automatically create
new ObjCInstances or return existing ones as needed.

The returned object’s Python class is not always exactly ObjCInstance. For example,
if the passed pointer refers to a class or a metaclass, an instance of ObjCClass
or ObjCMetaClass is returned as appropriate. Additional custom ObjCInstance subclasses
may be defined and registered using register_type_for_objcclass().
Creating an ObjCInstance from a nil pointer returns None.

Rubicon currently does not perform any automatic memory management on the Objective-C object
wrapped in an ObjCInstance. It is the user’s responsibility to retain and release
wrapped objects as needed, like in Objective-C code without automatic reference counting.

	
ptr

	
_as_parameter_

	The wrapped object pointer as an objc_id. This attribute is also available as _as_parameter_ to allow ObjCInstances to be passed into ctypes functions.

	
objc_class

	The Objective-C object’s class, as an ObjCClass.

	
__str__()

	Get a human-readable representation of self.

By default, self.description converted to a Python string is returned.
If self.description is nil, self.debugDescription converted to a Python is returned instead.
If that is also nil, repr(self) is returned as a fallback.

	
__repr__()

	Get a debugging representation of self, which includes the Objective-C object’s address, class,
and debugDescription.

	
__getattr__(name)

	Allows accessing Objective-C properties and methods using Python attribute syntax.

If self has a Python attribute with the given name, its value is returned.

If there is an Objective-C property with the given name, its value is returned using its getter method.
An attribute is considered a property if any of the following are true:

	A property with the name is present on the class (i. e. declared using @property in the source code)

	There is both a getter and setter method for the name

	The name has been declared as a property using ObjCClass.declare_property()

Otherwise, a method matching the given name is looked up. ObjCInstance understands two syntaxes
for calling Objective-C methods:

	“Flat” syntax: the Objective-C method name is spelled out in the attribute name,
with all colons replaced with underscores, and all arguments are passed as positional arguments.
For example, the Objective-C method call [self initWithWidth:w height:h]
translates to self.initWithWidth_height_(w, h).

	“Interleaved” syntax: the Objective-C method name is split up between the attribute name
and the keyword arguments passed to the returned method. For example, the Objective-C method call
[self initWithRed:r green:g blue:b] translates to self.initWithRed(r, green=g, blue=b).

The “interleaved” syntax is usually preferred, since it looks more similar to normal Objective-C syntax.
However, the “flat” syntax is also fully supported. Certain method names require the “flat” syntax,
for example if two arguments have the same label (e. g. performSelector:withObject:withObject:),
which is not supported by Python’s keyword argument syntax.

Warning

The “interleaved” syntax currently ignores the ordering of its keyword arguments.
However, in the interest of readability, the keyword arguments should always be passed
in the same order as they appear in the method name.

This also means that two methods whose names which differ only in the ordering of their keywords
will conflict with each other, and can only be called reliably using “flat” syntax.

As of Python 3.6, the order of keyword arguments passed to functions is preserved (PEP 468 [https://peps.python.org/pep-0468/]).
In the future, once Rubicon requires Python 3.6 or newer, “interleaved” method calls
will respect keyword argument order. This will fix the kind of conflict described above,
but will also disallow specifying the keyword arguments out of order.

	
__setattr__(name, value)

	Allows modifying Objective-C properties using Python syntax.

If self has a Python attribute with the given name, it is set. Otherwise, the name should refer
to an Objective-C property, whose setter method is called with value.

	
rubicon.objc.api.objc_const(dll, name)

	Create an ObjCInstance from a global pointer variable in a CDLL.

This function is most commonly used to access constant object pointers defined by a library/framework, such as
NSCocoaErrorDomain [https://developer.apple.com/documentation/foundation/nscocoaerrordomain?language=objc].

Objective-C classes

	
class rubicon.objc.api.ObjCClass(name_or_ptr[, bases, attrs[, protocols=()]])

	Python wrapper for an Objective-C class.

ObjCClass is a subclass of ObjCInstance and supports the same syntaxes for calling methods
and accessing properties.

The constructor accepts either the name of an Objective-C class to look up
(as str or bytes), or a pointer to an existing class object
(in any form accepted by ObjCInstance).

If given a pointer, it must refer to an Objective-C class; pointers to other objects are not accepted.
(Use ObjCInstance to wrap a pointer that might also refer to other kinds of objects.)
If the pointer refers to a metaclass, an instance of ObjCMetaClass is returned instead.
Creating an ObjCClass from a Nil pointer returns None.

ObjCClass can also be called like type, with three arguments
(name, bases list, namespace mapping). This form is called implicitly by Python’s class syntax,
and is used to create a new Objective-C class from Python (see Creating custom Objective-C classes and protocols).
The bases list must contain exactly one ObjCClass to be extended by the new class.
An optional protocols keyword argument is also accepted,
which must be a sequence of ObjCProtocols for the new class to adopt.

	
name

	The name of this class, as a str.

	
superclass

	The superclass of this class, or None if this is a root class (such as NSObject).

	
protocols

	The protocols adopted by this class.

	
declare_property(name)

	Declare the instance method name to be a property getter.

This causes the attribute named name on instances of this class to be treated as a property
rather than a method — accessing it returns the property’s value, without requiring an explicit method call.
See ObjCInstance.__getattr__ for a full description of how attribute access behaves for properties.

Most properties do not need to be declared explicitly using this method, as they are detected automatically
by ObjCInstance.__getattr__. This method only needs to be used for properties that are read-only
and don’t have a @property declaration in the source code, because Rubicon cannot tell such properties
apart from normal zero-argument methods.

Note

In the standard Apple SDKs, some properties are introduced as regular methods in one system version,
and then declared as properties in a later system version. For example, the description method/property
of NSObject was declared as a regular method up to OS X 10.9 [https://github.com/phracker/MacOSX-SDKs/blob/9fc3ed0ad0345950ac25c28695b0427846eea966/MacOSX10.9.sdk/usr/include/objc/NSObject.h#L40],
but changed to a property as of OS X 10.10 [https://github.com/phracker/MacOSX-SDKs/blob/9fc3ed0ad0345950ac25c28695b0427846eea966/MacOSX10.10.sdk/usr/include/objc/NSObject.h#L43].

Such properties cause compatibility issues when accessed from Rubicon: obj.description() works on 10.9
but is a TypeError on 10.10, whereas obj.description works on 10.10
but returns a method object on 10.9. To solve this issue, the property can be declared explicitly
using NSObject.declare_property('description'), so that it can always be accessed
using obj.description.

	
declare_class_property(name)

	Declare the class method name to be a property getter.

This is equivalent to self.objc_class.declare_property(name).

	
__instancecheck__(instance)

	Check whether the given object is an instance of this class.

If the given object is not an Objective-C object, False is returned.

This method allows using ObjCClasses as the second argument of isinstance():
isinstance(obj, NSString) is equivalent to obj.isKindOfClass(NSString).

	
__subclasscheck__(subclass)

	Check whether the given class is a subclass of this class.

If the given object is not an Objective-C class, TypeError is raised.

This method allows using ObjCClasses as the second argument of issubclass():
issubclass(cls, NSValue) is equivalent to obj.isSubclassOfClass(NSValue).

	
class rubicon.objc.api.ObjCMetaClass(name_or_ptr)

	Python wrapper for an Objective-C metaclass.

ObjCMetaClass is a subclass of ObjCClass and supports almost exactly the same operations
and methods. However, there is usually no need to look up a metaclass manually.
The main reason why ObjCMetaClass is a separate class is to differentiate it from ObjCClass
in the repr(). (Otherwise there would be no way to tell classes and metaclasses apart,
since metaclasses are also classes, and have exactly the same name as their corresponding class.)

The constructor accepts either the name of an Objective-C metaclass to look up
(as str or bytes), or a pointer to an existing metaclass object
(in any form accepted by ObjCInstance).

If given a pointer, it must refer to an Objective-C metaclass; pointers to other objects are not accepted.
(Use ObjCInstance to wrap a pointer that might also refer to other kinds of objects.)
Creating an ObjCMetaClass from a Nil pointer returns None.

Standard Objective-C and Foundation classes

The following classes from the Objective-C runtime [https://developer.apple.com/documentation/objectivec?language=objc] and the Foundation [https://developer.apple.com/documentation/foundation?language=objc] framework are provided as ObjCClasses for convenience. (Other classes not listed here can be looked up by passing a class name to the ObjCClass constructor.)

Note

None of the following classes have a usable Python-style constructor - for example, you cannot call NSString("hello") to create an Objective-C string from a Python string. To create instances of these classes, you should use ns_from_py() (also called at()): ns_from_py("hello") returns a NSString instance with the value hello.

	
class rubicon.objc.api.NSObject

	The NSObject [https://developer.apple.com/documentation/objectivec/nsobject?language=objc] class from <objc/NSObject.h>.

Note

See the ObjCInstance documentation for a list of operations that Rubicon supports on all objects.

	
debugDescription

	
description

	These Objective-C properties have been declared using ObjCClass.declare_property() and can always be accessed using attribute syntax.

	
class rubicon.objc.api.Protocol

	The Protocol [https://developer.apple.com/documentation/objectivec/protocol?language=objc] class from <objc/Protocol.h>.

Note

This class has no (non-deprecated) Objective-C methods; protocol objects can only be manipulated using Objective-C runtime functions. Rubicon automatically wraps all Protocol objects using ObjCProtocol, which provides an easier interface for working with protocols.

	
class rubicon.objc.api.NSNumber

	The NSNumber [https://developer.apple.com/documentation/foundation/nsnumber?language=objc] class from <Foundation/NSValue.h>.

Note

This class can be converted to and from standard Python primitives (bool, int, float) using py_from_ns() and ns_from_py().

	
class rubicon.objc.api.NSDecimalNumber

	The NSDecimalNumber [https://developer.apple.com/documentation/foundation/nsdecimalnumber?language=objc] class from <Foundation/NSDecimalNumber.h>.

Note

This class can be converted to and from Python decimal.Decimal using py_from_ns() and ns_from_py().

	
class rubicon.objc.api.NSString

	The NSString [https://developer.apple.com/documentation/foundation/nsstring?language=objc] class from <Foundation/NSString.h>.

This class also supports all methods that str does.

Note

This class can be converted to and from Python str using py_from_ns() and ns_from_py(). You can also call str(nsstring) to convert a NSString to str.

NSString objects consist of UTF-16 code units, unlike str, which consists of Unicode code points. All NSString indices and iteration are based on UTF-16, even when using the Python-style operations/methods. If indexing or iteration based on code points is required, convert the NSString to str first.

	
__str__()

	Return the value of this NSString as a str.

	
UTF8String

	This Objective-C property has been declared using ObjCClass.declare_property() and can always be accessed using attribute syntax.

	
class rubicon.objc.api.NSData

	The NSData [https://developer.apple.com/documentation/foundation/nsdata?language=objc] class from <Foundation/NSData.h>.

Note

This class can be converted to and from Python bytes using py_from_ns() and ns_from_py().

	
class rubicon.objc.api.NSArray

	The NSArray [https://developer.apple.com/documentation/foundation/nsarray?language=objc] class from <Foundation/NSArray.h>.

Note

This class can be converted to and from Python list using py_from_ns() and ns_from_py().

py_from_ns(nsarray) will recursively convert nsarray’s elements to Python objects, where possible. To avoid this recursive conversion, use list(nsarray) instead.

ns_from_py(pylist) will recursively convert pylist’s elements to Objective-C. As there is no way to store Python object references as Objective-C objects yet, this recursive conversion cannot be avoided. If any of pylist’s elements cannot be converted to Objective-C, an error is raised.

	
__getitem__(index)

	
__len__()

	
__iter__()

	
__contains__(value)

	
__eq__(other)

	
__ne__(other)

	
index(value)

	
count(value)

	
copy()

	Python-style sequence interface.

	
class rubicon.objc.api.NSMutableArray

	The NSMutableArray [https://developer.apple.com/documentation/foundation/nsmutablearray?language=objc] class from <Foundation/NSArray.h>.

Note

This class can be converted to and from Python exactly like its superclass NSArray.

	
__setitem__(index, value)

	
__delitem__(index)

	
append(value)

	
clear()

	
extend(values)

	
insert(index, value)

	
pop([index=-1])

	
remove(value)

	
reverse()

	Python-style mutable sequence interface.

	
class rubicon.objc.api.NSDictionary

	The NSDictionary [https://developer.apple.com/documentation/foundation/nsdictionary?language=objc] class from <Foundation/NSDictionary.h>.

Note

This class can be converted to and from Python dict using py_from_ns() and ns_from_py().

py_from_ns(nsdict) will recursively convert nsdict’s keys and values to Python objects, where possible. To avoid the recursive conversion of the values, use {py_from_ns(k): v for k, v in nsdict.items()}. The conversion of the keys cannot be avoided, because Python dict keys need to be hashable, which ObjCInstance is not. If any of the keys convert to a Python object that is not hashable, an error is raised (regardless of which conversion method you use).

ns_from_py(pydict) will recursively convert pydict’s keys and values to Objective-C. As there is no way to store Python object references as Objective-C objects yet, this recursive conversion cannot be avoided. If any of pydict’s keys or values cannot be converted to Objective-C, an error is raised.

	
__getitem__(key)

	
__len__()

	
__iter__()

	
__contains__(key)

	
__eq__(other)

	
__ne__(other)

	
copy()

	
get(key[, default=None])

	
keys()

	
items()

	
values()

	Python-style mapping interface.

Note

Unlike most Python mappings, NSDictionary’s keys, values, and items methods don’t return dynamic views of the dictionary’s keys, values, and items.

keys and values return lists that are created each time the methods are called, which can have an effect on performance and memory usage for large dictionaries. To avoid this, you can cache the return values of keys and values, or convert the NSDictionary to a Python dict beforehand.

items is currently implemented as a generator, meaning that it returns a single-use iterator. If you need to iterate over items more than once or perform other operations on it, you should convert it to a Python set or list first.

	
class rubicon.objc.api.NSMutableDictionary

	The NSMutableDictionary [https://developer.apple.com/documentation/foundation/nsmutabledictionary?language=objc] class from <Foundation/NSDictionary.h>.

Note

This class can be converted to and from Python exactly like its superclass NSDictionary.

	
__setitem__(key, value)

	
__delitem__(key)

	
clear()

	
pop(item[, default])

	
popitem()

	
setdefault(key[, default=None])

	
update([other,]**kwargs)

	Python-style mutable mapping interface.

Objective-C protocols

	
class rubicon.objc.api.ObjCProtocol(name_or_ptr[, bases, attrs])

	Python wrapper for an Objective-C protocol.

The constructor accepts either the name of an Objective-C protocol to look up
(as str or bytes), or a pointer to an existing protocol object
(in any form accepted by ObjCInstance).

If given a pointer, it must refer to an Objective-C protocol; pointers to other objects are not accepted.
(Use ObjCInstance to wrap a pointer that might also refer to other kinds of objects.)
Creating an ObjCProtocol from a nil pointer returns None.

ObjCProtocol can also be called like type, with three arguments
(name, bases list, namespace mapping). This form is called implicitly by Python’s class syntax,
and is used to create a new Objective-C protocol from Python (see Creating custom Objective-C classes and protocols).
The bases list can contain any number of ObjCProtocol objects to be extended by the new protocol.

	
name

	The name of this protocol, as a str.

	
protocols

	The protocols that this protocol extends.

	
__instancecheck__(instance)

	Check whether the given object conforms to this protocol.

If the given object is not an Objective-C object, False is returned.

This method allows using ObjCProtocols as the second argument of isinstance():
isinstance(obj, NSCopying) is equivalent to obj.conformsToProtocol(NSCopying).

	
__subclasscheck__(subclass)

	Check whether the given class or protocol conforms to this protocol.

If the given object is not an Objective-C class or protocol, TypeError is raised.

This method allows using ObjCProtocols as the second argument of issubclass():
issubclass(cls, NSCopying) is equivalent to cls.conformsToProtocol(NSCopying),
and issubclass(proto, NSCopying) is equivalent to protocol_conformsToProtocol(proto, NSCopying)).

Standard Objective-C and Foundation protocols

The following protocols from the Objective-C runtime [https://developer.apple.com/documentation/objectivec?language=objc] and the Foundation [https://developer.apple.com/documentation/foundation?language=objc] framework are provided as ObjCProtocols for convenience. (Other protocols not listed here can be looked up by passing a protocol name to the ObjCProtocol constructor.)

	
rubicon.objc.api.NSObjectProtocol

	The NSObject [https://developer.apple.com/documentation/objectivec/1418956-nsobject?language=objc] protocol from <objc/NSObject.h>. The protocol is exported as NSObjectProtocol in Python because it would otherwise clash with the NSObject class.

Converting objects between Objective-C and Python

	
rubicon.objc.api.py_from_ns(nsobj)

	Convert a Foundation object into an equivalent Python object if possible.

Currently supported types:

	objc_id: Wrapped in an ObjCInstance and converted as below

	NSString: Converted to str

	NSData: Converted to bytes

	NSDecimalNumber: Converted to decimal.Decimal

	NSDictionary: Converted to dict, with all keys and values converted recursively

	NSArray: Converted to list, with all elements converted recursively

	NSNumber: Converted to a bool, int or float based on the type of its contents

Other objects are returned unmodified as an ObjCInstance.

	
rubicon.objc.api.ns_from_py(pyobj)

	Convert a Python object into an equivalent Foundation object. The returned object is autoreleased.

This function is also available under the name at(), because its functionality is very similar to that of the
Objective-C @ operator and literals.

Currently supported types:

	None, ObjCInstance: Returned as-is

	enum.Enum: Replaced by their value and converted as below

	str: Converted to NSString

	bytes: Converted to NSData

	decimal.Decimal: Converted to NSDecimalNumber

	dict: Converted to NSDictionary, with all keys and values converted recursively

	list: Converted to NSArray, with all elements converted recursively

	bool, int, float: Converted to NSNumber

Other types cause a TypeError.

	
rubicon.objc.api.at(pyobj)

	Alias for ns_from_py().

Creating custom Objective-C classes and protocols

Custom Objective-C classes are defined using Python class syntax, by subclassing an existing ObjCClass object:

class MySubclass(NSObject):
 # method, property, etc. definitions go here

A custom Objective-C class can only have a single superclass, since Objective-C does not support multiple inheritance. However, the class can conform to any number of protocols, which are specified by adding the protocols keyword argument to the base class list:

class MySubclass(NSObject, protocols=[NSCopying, NSMutableCopying]):
 # method, property, etc. definitions go here

Note

Rubicon requires specifying a superclass when defining a custom Objective-C class. If you don’t need to extend any specific class, use NSObject as the superclass.

Although Objective-C technically allows defining classes without a base class (so-called root classes), this is almost never the desired behavior (attempting to do so causes a compiler error by default [https://developer.apple.com/documentation/objectivec/objc_root_class]). In practice, this feature is only used in the definitions of core Objective-C classes like NSObject. Because of this, Rubicon does not support defining Objective-C root classes.

Similar syntax is used to define custom Objective-C protocols. Unlike classes, protocols can extend multiple other protocols:

class MyProtocol(NSCopying, NSMutableCopying):
 # method, property, etc. definitions go here

A custom protocol might not need to extend any other protocol at all. In this case, we need to explicitly tell Python to define an ObjCProtocol. Normally Python detects the metaclass automatically by examining the base classes, but in this case there are none, so we need to specify the metaclass manually.

class MyProtocol(metaclass=ObjCProtocol):
 # method, property, etc. definitions go here

Defining methods

	
rubicon.objc.api.objc_method(py_method)

	Exposes the decorated method as an Objective-C instance method in a custom class or protocol.

In a custom Objective-C class, decorating a method with @objc_method
makes it available to Objective-C: a corresponding Objective-C method is created in the new Objective-C class,
whose implementation calls the decorated Python method. The Python method receives all arguments
(including self) from the Objective-C method call, and its return value is passed back to Objective-C.

In a custom Objective-C protocol, the behavior is similar, but the method body is ignored,
since Objective-C protocol methods have no implementations. By convention, the method body in this case
should be empty (pass). (Since the method is never called, you could put any other code there as well,
but doing so is misleading and discouraged.)

	
rubicon.objc.api.objc_classmethod(py_method)

	Exposes the decorated method as an Objective-C class method in a custom class or protocol.

This decorator behaves exactly like @objc_method, except that the decorated method
becomes a class method, so it is exposed on the Objective-C class rather than its instances.

Method naming

The name of a Python-defined Objective-C method is same as the Python method’s name, but with all underscores (_) replaced with colons (:) — for example, initWithWidth_height_ becomes initWithWidth:height:.

Warning

The Objective-C language imposes certain requirements on the usage of colons in method names: a method’s name must contain exactly as many colons as the method has arguments (excluding the implicit self and _cmd parameters), and the name of a method with arguments must end with a colon. For example, a method called init takes no arguments, initWithSize: takes a single argument, initWithWidth:height: takes two, etc. initWithSize:spam is an invalid method name.

These requirements are not enforced by the Objective-C runtime, but methods that do not follow them cannot easily be used from regular Objective-C code.

In addition, although the Objective-C language allows method names with multiple consecutive colons or a colon at the start of the name, such names are considered bad style and never used in practice. For example, spam::, :ham:, and : are unusual, but valid method names.

Future versions of Rubicon may warn about or disallow such nonstandard method names.

Parameter and return types

The argument and return types of a Python-created Objective-C method are determined based on the Python method’s type annotations. The annotations may contain any ctypes type, as well as any of the Python types accepted by ctype_for_type(). If a parameter or the return type is not specified, it defaults to ObjCInstance. The self parameter is special-cased — its type is always ObjCInstance, even if annotated otherwise. To annotate a method as returning void, set its return type to None.

Before being passed to the Python method, any object parameters (objc_id) are automatically converted to ObjCInstance. If the method returns an Objective-C object, it is converted using ns_from_py() before being returned to Objective-C. These automatic conversions can be disabled by using objc_rawmethod() instead of objc_method().

The implicit _cmd parameter is not passed to the Python method, as it is normally redundant and not needed. If needed, the _cmd parameter can be accessed by using objc_rawmethod() instead of objc_method().

	
rubicon.objc.api.objc_rawmethod(py_method)

	Exposes the decorated method as an Objective-C instance method in a custom class,
with fewer convenience features than objc_method().

This decorator behaves similarly to @objc_method. However, unlike with objc_method(),
no automatic conversions are performed (aside from those by ctypes).
This means that all parameter and return types must be provided as ctypes types
(no ctype_for_type() conversion is performed), all arguments are passed in their raw form
as received from ctypes, and the return value must be understood by ctypes.

In addition, the implicit _cmd parameter is exposed to the Python method, which is not the case
when using objc_method(). This means that the decorated Python method must always have
an additional _cmd parameter after self; if it is missing, there will be errors at runtime
due to mismatched argument counts. Like self, _cmd never needs to be annotated,
and any annotations on it are ignored.

Defining properties and ivars

	
rubicon.objc.api.objc_property(vartype=<class 'rubicon.objc.runtime.objc_id'>, weak=False)

	Defines a property in a custom Objective-C class or protocol.

This class should be called in the body of an Objective-C subclass or protocol, for example:

class MySubclass(NSObject):
 counter = objc_property(NSInteger)

The property type may be any ctypes type, as well as any of the Python types
accepted by ctype_for_type().

Defining a property automatically defines a corresponding getter and setter.
Following standard Objective-C naming conventions, for a property name the getter is called name
and the setter is called setName:.

In a custom Objective-C class, implementations for the getter and setter are also generated,
which store the property’s value in an ivar called _name. If the property has an object type,
the generated setter keeps the stored object retained, and releases it when it is replaced.

In a custom Objective-C protocol, only the metadata for the property is generated.

If weak is True, the property will be created as a weak property. When assigning an object to it,
the reference count of the object will not be increased. When the object is deallocated, the property
value is set to None. Weak properties are only supported for Objective-C or Python object types.

	
rubicon.objc.api.objc_ivar(vartype)

	Defines an ivar in a custom Objective-C class.

If you want to store additional data on a custom Objective-C class, it is recommended to use properties
(objc_property()) instead of ivars. Properties are a more modern and high-level Objective-C feature,
which automatically deal with reference counting for objects, and creation of getters and setters.

The ivar type may be any ctypes type.

Unlike properties, the contents of an ivar cannot be accessed or modified using Python attribute syntax.
Instead, the get_ivar() and set_ivar() functions need to be used.

	
rubicon.objc.api.get_ivar(obj, varname, weak=False)

	Get the value of obj’s ivar named varname.

The returned object is a ctypes data object.

For non-object types (everything except objc_id and subclasses), the returned data object is backed by the
ivar’s actual memory. This means that the data object is only usable as long as the “owner” object is alive, and
writes to it will directly change the ivar’s value.

For object types, the returned data object is independent of the ivar’s memory. This is because object ivars may
be weak, and thus cannot always be accessed directly by their address.

	
rubicon.objc.api.set_ivar(obj, varname, value, weak=False)

	Set obj’s ivar varname to value. If weak is True, only a weak reference to the value is stored.

value must be a ctypes data object whose type matches that of the ivar.

Objective-C blocks

Blocks are the Objective-C equivalent of function objects, so Rubicon provides ways to call Objective-C blocks from Python and to pass Python callables to Objective-C as blocks.

Automatic conversion

If an Objective-C method returns a block (according to its type encoding), Rubicon will convert the return value to a special ObjCInstance that can be called in Python:

block = an_objc_instance.methodReturningABlock()
res = block(arg, ...)

Similarly, if an Objective-C method has a parameter that expects a block, you can pass in a Python callable object, and it will be converted to an Objective-C block. In this case, the callable object needs to have parameter and return type annotations, so that Rubicon can expose this type information to the Objective-C runtime:

def result_handler(res: objc_id) -> None:
 print(ObjCInstance(res))

an_objc_instance.doSomethingWithResultHandler(result_handler)

If you are writing a custom Objective-C method (see Creating custom Objective-C classes and protocols), you can annotate parameter or return types using objc_block so that Rubicon converts them appropriately:

class AnObjCClass(NSObject):
 @objc_method
 def methodReturningABlock() -> objc_block:
 def the_block(arg: NSInteger) -> NSUInteger:
 return abs(arg)
 return the_block

 @objc_method
 def doSomethingWithResultHandler_(result_handler: objc_block) -> None:
 res = SomeClass.someMethod()
 result_handler(res)

Note

These automatic conversions are mostly equivalent to the manual conversions described in the next section. There are internal technical differences between automatic and manual conversions, but they are not noticeable to most users.

The internals of automatic conversion and objc_block handling may change in the future, so if you need more control over the block conversion process, you should use the manual conversions described in the next section.

Manual conversion

These classes are used to manually convert blocks to Python callables and vice versa. You may need to use them to perform these conversions outside of Objective-C method calls, or if you need more control over the block’s type signature.

	
class rubicon.objc.api.ObjCBlock(pointer[, return_type, *arg_types])

	Python wrapper for an Objective-C block object.

This class is used to manually wrap an Objective-C block so that it can be called from Python. Usually Rubicon will
do this automatically, if the block object was returned from an Objective-C method whose return type is declared
to be a block type. If this automatic detection fails, for example if the method’s return type is generic id,
Rubicon has no way to tell that the object in question is a block rather than a regular Objective-C object.
In that case, the object needs to be manually wrapped using ObjCBlock.

The constructor takes a block object, which can be either an ObjCInstance, or a raw
objc_id pointer.

Note

objc_block is also accepted, because it is a subclass of
objc_id). Normally you do not need to make use of this,
because in most cases Rubicon will automatically convert objc_blocks
to a callable object.

In most cases, Rubicon can automatically determine the block’s return type and parameter types.
If a block object doesn’t have return/parameter type information at runtime, Rubicon will raise an error when
attempting to convert it. In that case, you need to explicitly pass the correct return type and parameter types
to ObjCBlock using the restype and argtypes parameters.

	
__call__(*args)

	Invoke the block object with the given arguments.

The arguments and return value are converted from/to Python objects according to the default ctypes rules,
based on the block’s return and parameter types.

	
class rubicon.objc.api.Block(func[, restype, *argtypes])

	A wrapper that exposes a Python callable object to Objective-C as a block.

Note

Block instances are currently not callable from Python, unlike ObjCBlock.

The constructor accepts any Python callable object.

If the callable has parameter and return type annotations, they are used as the block’s parameter and return
types. This allows using Block as a decorator:

@Block
def the_block(arg: NSInteger) -> NSUInteger:
 return abs(arg)

For callables without type annotations, the parameter and return types need to be passed to the Block
constructor in the restype and argtypes arguments:

the_block = Block(abs, NSUInteger, NSInteger)

Defining custom subclasses of ObjCInstance

The following functions can be used to register custom subclasses of ObjCInstance to be used when wrapping instances of a certain Objective-C class. This mechanism is for example used by Rubicon to provide Python-style operators and methods on standard Foundation classes, such as NSString and NSDictionary.

	
rubicon.objc.api.register_type_for_objcclass(pytype, objcclass)

	Register a conversion from an Objective-C class to an ObjCInstance subclass.

After a call of this function, when Rubicon wraps an Objective-C object that is an instance of objcclass
(or a subclass), the Python object will have the class pytype rather than ObjCInstance.
See type_for_objcclass() for a full description of the lookup process.

Warning

This function should only be called if no instances of objcclass (or a subclass)
have been wrapped by Rubicon yet. If the function is called later, it will not fully take effect:
the types of existing instances do not change, and mappings for subclasses of objcclass are not updated.

	
rubicon.objc.api.for_objcclass(objcclass)

	Decorator for registering a conversion from an Objective-C class to an ObjCInstance subclass.

This is equivalent to calling register_type_for_objcclass() on the decorated class.

	
rubicon.objc.api.type_for_objcclass(objcclass)

	Look up the ObjCInstance subclass used to represent instances of the given Objective-C class in Python.

If the exact Objective-C class is not registered, each superclass is also checked,
defaulting to ObjCInstance if none of the classes in the superclass chain is registered.
Afterwards, all searched superclasses are registered for the ObjCInstance subclass that was found.
(This speeds up future lookups, and ensures that previously computed mappings are not changed
by unrelated registrations.)

This method is mainly intended for internal use by Rubicon, but is exposed in the public API for completeness.

	
rubicon.objc.api.unregister_type_for_objcclass(objcclass)

	Unregister a conversion from an Objective-C class to an ObjCInstance subclass.

Warning

This function should only be called if no instances of objcclass (or a subclass)
have been wrapped by Rubicon yet. If the function is called later, it will not fully take effect:
the types of existing instances do not change, and mappings for subclasses of objcclass are not removed.

	
rubicon.objc.api.get_type_for_objcclass_map()

	Get a copy of all currently registered ObjCInstance subclasses as a mapping.

Keys are Objective-C class addresses as ints.

rubicon.objc.eventloop — Integrating native event loops with asyncio

Note

The documentation for this module is incomplete. You can help by contributing to the documentation.

	
class rubicon.objc.eventloop.EventLoopPolicy

	Rubicon event loop policy

In this policy, each thread has its own event loop. However, we only
automatically create an event loop by default for the main thread; other
threads by default have no event loop.

	
new_event_loop()

	Create a new event loop and return it.

	
get_default_loop()

	Get the default event loop.

	
get_child_watcher()

	Get the watcher for child processes.

If not yet set, a SafeChildWatcher object is automatically created.

	
set_child_watcher(watcher)

	Set the watcher for child processes.

	
class rubicon.objc.eventloop.CocoaLifecycle(application)

	A lifecycle manager for Cocoa (NSApplication) apps.

	
start()

	

	
stop()

	

	
class rubicon.objc.eventloop.iOSLifecycle

	A lifecycle manager for iOS (UIApplication) apps.

	
start()

	

	
stop()

	

rubicon.objc.runtime — Low-level Objective-C runtime access

This module contains types, functions, and C libraries used for low-level access to the Objective-C runtime.

In most cases there is no need to use this module directly — the rubicon.objc.api module provides the same functionality through a high-level interface.

Contents

	rubicon.objc.runtime — Low-level Objective-C runtime access

	C libraries

	Objective-C runtime types

	Objective-C runtime utility functions

C libraries

Some commonly used C libraries are provided as CDLLs. Other libraries can be loaded using the load_library() function.

	
rubicon.objc.runtime.libc = load_library('c')

	The C standard library [https://en.cppreference.com/w/c].

The following functions are accessible by default:

	
	free

	

	
rubicon.objc.runtime.libobjc = load_library('objc')

	The Objective-C runtime library [https://developer.apple.com/documentation/objectivec].

The following functions are accessible by default:

	
	class_addIvar

	class_addMethod

	class_addProperty

	class_addProtocol

	class_copyIvarList

	class_copyMethodList

	class_copyPropertyList

	class_copyProtocolList

	class_getClassMethod

	class_getClassVariable

	class_getInstanceMethod

	class_getInstanceSize

	class_getInstanceVariable

	class_getIvarLayout

	class_getMethodImplementation

	class_getName

	class_getProperty

	class_getSuperclass

	class_getVersion

	class_getWeakIvarLayout

	class_isMetaClass

	class_replaceMethod

	class_respondsToSelector

	class_setIvarLayout

	class_setVersion

	class_setWeakIvarLayout

	ivar_getName

	ivar_getOffset

	ivar_getTypeEncoding

	method_exchangeImplementations

	method_getImplementation

	method_getName

	
	method_getTypeEncoding

	method_setImplementation

	objc_allocateClassPair

	objc_copyProtocolList

	objc_getAssociatedObject

	objc_getClass

	objc_getMetaClass

	objc_getProtocol

	objc_registerClassPair

	objc_removeAssociatedObjects

	objc_setAssociatedObject

	object_getClass

	object_getClassName

	object_getIvar

	object_setIvar

	property_getAttributes

	property_getName

	property_copyAttributeList

	protocol_addMethodDescription

	protocol_addProtocol

	protocol_addProperty

	objc_allocateProtocol

	protocol_conformsToProtocol

	protocol_copyMethodDescriptionList

	protocol_copyPropertyList

	protocol_copyProtocolList

	protocol_getMethodDescription

	protocol_getName

	objc_registerProtocol

	sel_getName

	sel_isEqual

	sel_registerName

	
rubicon.objc.runtime.Foundation = load_library('Foundation')

	The Foundation [https://developer.apple.com/documentation/foundation] framework.

	
rubicon.objc.runtime.load_library(name)

	Load and return the C library with the given name.

If the library could not be found, a ValueError is raised.

Internally, this function uses ctypes.util.find_library() to search for the library in the system-standard
locations. If the library cannot be found this way, it is attempted to load the library from certain hardcoded
locations, as a fallback for systems where find_library does not work (such as iOS).

Objective-C runtime types

These are various types used by the Objective-C runtime functions.

	
class rubicon.objc.runtime.objc_id([value])

	The id [https://developer.apple.com/documentation/objectivec/id?language=objc] type
from <objc/objc.h>.

	
class rubicon.objc.runtime.objc_block([value])

	The low-level type of block pointers.

This type tells Rubicon’s internals that the object in question is a block and not just a regular Objective-C
object, which affects method argument and return value conversions. For more details, see Objective-C blocks.

Note

This type does not correspond to an actual C type or Objective-C class. Although the internal structure of
block objects is documented, as well as the fact that they are Objective-C objects, they do not have a
documented type or class name and are not fully defined in any header file.

Aside from the special conversion behavior, this type is equivalent to objc_id.

	
class rubicon.objc.runtime.SEL([value])

	The SEL [https://developer.apple.com/documentation/objectivec/sel?language=objc] type
from <objc/objc.h>.

The constructor can be called with a bytes or str object to obtain a selector
with that value. (The normal arguments supported by c_void_p are still accepted.)

	
name

	The selector’s name as bytes.

	
class rubicon.objc.runtime.Class([value])

	The Class [https://developer.apple.com/documentation/objectivec/class?language=objc] type
from <objc/objc.h>.

	
class rubicon.objc.runtime.IMP([value])

	The IMP [https://developer.apple.com/documentation/objectivec/objective_c_runtime/imp?language=objc] type
from <objc/objc.h>.

An IMP cannot be called directly — it must be cast to the correct CFUNCTYPE() first,
to provide the necessary information about its signature.

	
class rubicon.objc.runtime.Method([value])

	The Method [https://developer.apple.com/documentation/objectivec/method?language=objc] type
from <objc/runtime.h>.

	
class rubicon.objc.runtime.Ivar([value])

	The Ivar [https://developer.apple.com/documentation/objectivec/ivar?language=objc] type
from <objc/runtime.h>.

	
class rubicon.objc.runtime.objc_property_t([value])

	The objc_property_t [https://developer.apple.com/documentation/objectivec/objc_property_t?language=objc]
type from <objc/runtime.h>.

	
class rubicon.objc.runtime.objc_property_attribute_t([name, value])

	The objc_property_attribute_t [https://developer.apple.com/documentation/objectivec/objc_property_attribute_t?language=objc] structure
from <objc/runtime.h>.

	
name

	
value

	The attribute name and value as C strings (bytes).

	
class rubicon.objc.runtime.objc_method_description([name, value])

	The objc_method_description [https://developer.apple.com/documentation/objectivec/objc_method_description?language=objc] structure
from <objc/runtime.h>.

	
name

	The method name as a SEL.

	
types

	The method’s signature encoding as a C string (bytes).

	
class rubicon.objc.runtime.objc_super([receiver, super_class])

	The objc_super [https://developer.apple.com/documentation/objectivec/objc_super?language=objc] structure
from <objc/message.h>.

	
receiver

	The receiver of the call, as an objc_id.

	
super_class

	The class in which to start searching for method implementations, as a Class.

Objective-C runtime utility functions

These utility functions provide easier access from Python to certain parts of the Objective-C runtime.

	
rubicon.objc.runtime.object_isClass(obj)

	Return whether the given Objective-C object is a class (or a metaclass).

This is equivalent to the libobjc function object_isClass [https://developer.apple.com/documentation/objectivec/1418659-object_isclass?language=objc] from <objc/runtime.h>, which is only available since OS X 10.10 and iOS 8. This module-level function is provided to support older systems — it uses the libobjc function if available, and otherwise emulates it.

	
rubicon.objc.runtime.get_class(name)

	Get the Objective-C class with the given name as a Class object.

If no class with the given name is loaded, None is returned, and the Objective-C runtime will log
a warning message.

	
rubicon.objc.runtime.should_use_stret(restype)

	Return whether a method returning the given type must be called using objc_msgSend_stret
on the current system.

	
rubicon.objc.runtime.should_use_fpret(restype)

	Return whether a method returning the given type must be called using objc_msgSend_fpret
on the current system.

	
rubicon.objc.runtime.send_message(receiver, selector, *args, restype, argtypes, varargs=None)

	Call a method on the receiver with the given selector and arguments.

This is the equivalent of an Objective-C method call like [receiver sel:args].

Note

Some Objective-C methods take variadic arguments (varargs), for example +[NSString stringWithFormat:] [https://developer.apple.com/documentation/foundation/nsstring/1497275-stringwithformat?language=objc].
When using send_message(), variadic arguments are treated differently from regular arguments:
they are not passed as normal function arguments in *args, but as a list in a separate varargs
keyword argument.

This explicit separation of regular and variadic arguments protects against accidentally passing too many
arguments into a method. By default these extra arguments would be considered varargs and passed on to the
method, even if the method in question doesn’t take varargs. Because of how the Objective-C runtime and most
C calling conventions work, this error would otherwise be silently ignored.

The types of varargs are not included in the argtypes list. Instead, the values are automatically
converted to C types using the default ctypes argument conversion rules. To ensure that all varargs are
converted to the expected C types, it is recommended to manually convert all varargs to ctypes types
instead of relying on automatic conversions. For example:

send_message(
 NSString, "stringWithFormat:",
 at("%i %s %@"),
 restype=objc_id, argtypes=[objc_id],
 varargs=[c_int(123), cast(b"C string", c_char_p), at("ObjC string")],
)

	Parameters:

	
	receiver – The object on which to call the method, as an ObjCInstance or objc_id.

	selector – The name of the method as a str, bytes, or SEL.

	args – The method arguments.

	restype – The return type of the method.

	argtypes – The argument types of the method, as a list.

	varargs – Variadic arguments for the method, as a list. Defaults to [].
These arguments are converted according to the default ctypes conversion rules.

	
rubicon.objc.runtime.send_super(cls, receiver, selector, *args, restype=<class 'ctypes.c_void_p'>, argtypes=None, _allow_dealloc=False)

	In the context of the given class, call a superclass method on the receiver
with the given selector and arguments.

This is the equivalent of an Objective-C method call like [super sel:args] in the class cls.

In practice, the first parameter should always be the special variable __class__,
and the second parameter should be self.
A typical send_super() call would be send_super(__class__, self, 'init') for example.

The special variable __class__ is defined by Python and stands for the class object that is being created
by the current class block. The exact reasons why __class__ must be passed manually are somewhat technical,
and are not directly relevant to users of send_super(). For a full explanation,
see issue pybee/rubicon-objc#107 [https://github.com/pybee/rubicon-objc/issues/107]
and PR pybee/rubicon-objc#108 [https://github.com/pybee/rubicon-objc/pull/108].

Although it is possible to pass other values than __class__ and self for the first two parameters,
this is strongly discouraged. Doing so is not supported by the Objective-C language,
and relies on implementation details of the superclasses.

	Parameters:

	
	cls – The class in whose context the super call is happening, as an ObjCClass or Class.

	receiver – The object on which to call the method, as an ObjCInstance, objc_id,
or c_void_p.

	selector – The name of the method as a str, bytes, or SEL.

	args – The method arguments.

	restype – The return type of the method. Defaults to c_void_p.

	argtypes – The argument types of the method, as a list. Defaults to an empty list
(i. e. all arguments are treated as C varargs).

	
rubicon.objc.runtime.add_method(cls, selector, method, encoding, replace=False)

	Add a new instance method to the given class.

To add a class method, add an instance method to the metaclass.

	Parameters:

	
	cls – The Objective-C class to which to add the method, as an ObjCClass or Class.

	selector – The name for the new method, as a str, bytes, or SEL.

	method – The method implementation, as a Python callable or a C function address.

	encoding – The method’s signature (return type and argument types) as a list.
The types of the implicit self and _cmd parameters must be included in the signature.

	replace – If the class already implements a method with the given name, replaces the current implementation
if True. Raises a ValueError error otherwise.

	Returns:

	The ctypes C function pointer object that was created for the method’s implementation.
This return value can be ignored. (In version 0.4.0 and older, callers were required to manually
keep a reference to this function pointer object to ensure that it isn’t garbage-collected.
Rubicon now does this automatically.)

	
rubicon.objc.runtime.add_ivar(cls, name, vartype)

	Add a new instance variable of type vartype to cls.

	
rubicon.objc.runtime.get_ivar(obj, varname, weak=False)

	Get the value of obj’s ivar named varname.

The returned object is a ctypes data object.

For non-object types (everything except objc_id and subclasses), the returned data object is backed by the
ivar’s actual memory. This means that the data object is only usable as long as the “owner” object is alive, and
writes to it will directly change the ivar’s value.

For object types, the returned data object is independent of the ivar’s memory. This is because object ivars may
be weak, and thus cannot always be accessed directly by their address.

	
rubicon.objc.runtime.set_ivar(obj, varname, value, weak=False)

	Set obj’s ivar varname to value. If weak is True, only a weak reference to the value is stored.

value must be a ctypes data object whose type matches that of the ivar.

rubicon.objc.types — Non-Objective-C types and utilities

This module contains definitions for common C constants and types, and utilities for working with C types.

Contents

	rubicon.objc.types — Non-Objective-C types and utilities

	Common C type definitions

	Common C constants

	Architecture detection constants

	Objective-C type encoding conversion

	Default registered type encodings

	Conversion of Python sequences to C structures and arrays

	Python to ctypes type mapping

	Default registered mappings

Common C type definitions

These are commonly used C types from various frameworks.

	
class rubicon.objc.types.c_ptrdiff_t([value])

	The ptrdiff_t [https://en.cppreference.com/w/c/types/ptrdiff_t] type from <stddef.h>. Equivalent to c_long on 64-bit systems and c_int on 32-bit systems.

	
class rubicon.objc.types.NSInteger([value])

	The NSInteger [https://developer.apple.com/documentation/objectivec/nsinteger?language=objc] type from <objc/NSObjCRuntime.h>. Equivalent to c_long on 64-bit systems and c_int on 32-bit systems.

	
class rubicon.objc.types.NSUInteger([value])

	The NSUInteger [https://developer.apple.com/documentation/objectivec/nsuinteger?language=objc] type from <objc/NSObjCRuntime.h>. Equivalent to c_ulong on 64-bit systems and c_uint on 32-bit systems.

	
class rubicon.objc.types.CGFloat([value])

	The CGFloat [https://developer.apple.com/documentation/coregraphics/cgfloat?language=objc] type from <CoreGraphics/CGBase.h>. Equivalent to c_double on 64-bit systems and c_float on 32-bit systems.

	
class rubicon.objc.types.NSPoint([x, y])

	The NSPoint [https://developer.apple.com/documentation/foundation/nspoint?language=objc] structure from <Foundation/NSGeometry.h>.

Note

On 64-bit systems this is an alias for CGPoint.

	
x

	
y

	The X and Y coordinates as CGFloats.

	
class rubicon.objc.types.CGPoint([x, y])

	The CGPoint [https://developer.apple.com/documentation/coregraphics/cgpoint?language=objc] structure from <CoreGraphics/CGGeometry.h>.

	
x

	
y

	The X and Y coordinates as CGFloats.

	
class rubicon.objc.types.NSSize([width, height])

	The NSSize [https://developer.apple.com/documentation/foundation/nssize?language=objc] structure from <Foundation/NSGeometry.h>.

Note

On 64-bit systems this is an alias for CGSize.

	
width

	
height

	The width and height as CGFloats.

	
class rubicon.objc.types.CGSize([width, height])

	The CGSize [https://developer.apple.com/documentation/coregraphics/cgsize?language=objc] structure from <CoreGraphics/CGGeometry.h>.

	
width

	
height

	The width and height as CGFloats.

	
class rubicon.objc.types.NSRect([origin, size])

	The NSRect [https://developer.apple.com/documentation/foundation/nsrect?language=objc] structure from <Foundation/NSGeometry.h>.

Note

On 64-bit systems this is an alias for CGRect.

	
origin

	The origin as a NSPoint.

	
size

	The size as a NSSize.

	
class rubicon.objc.types.CGRect([origin, size])

	The CGRect [https://developer.apple.com/documentation/coregraphics/cgrect?language=objc] structure from <CoreGraphics/CGGeometry.h>.

	
origin

	The origin as a CGPoint.

	
size

	The size as a CGSize.

	
class rubicon.objc.types.UIEdgeInsets([top, left, bottom, right])

	The UIEdgeInsets [https://developer.apple.com/documentation/uikit/uiedgeinsets?language=objc] structure from <UIKit/UIGeometry.h>.

	
top

	
left

	
bottom

	
right

	The insets as CGFloats.

	
class rubicon.objc.types.NSEdgeInsets([top, left, bottom, right])

	The NSEdgeInsets [https://developer.apple.com/documentation/foundation/nsedgeinsets?language=objc] structure from <Foundation/NSGeometry.h>.

	
top

	
left

	
bottom

	
right

	The insets as CGFloats.

	
class rubicon.objc.types.NSTimeInterval([value])

	The NSTimeInterval [https://developer.apple.com/documentation/foundation/nstimeinterval?language=objc] type from <Foundation/NSDate.h>. Equivalent to c_double.

	
class rubicon.objc.types.CFIndex([value])

	The CFIndex [https://developer.apple.com/documentation/corefoundation/cfindex?language=objc] type from <CoreFoundation/CFBase.h>. Equivalent to c_longlong on 64-bit systems and c_long on 32-bit systems.

	
class rubicon.objc.types.UniChar([value])

	The UniChar [https://developer.apple.com/documentation/kernel/unichar?language=objc] type from <MacTypes.h>. Equivalent to c_ushort.

	
class rubicon.objc.types.unichar([value])

	The unichar [https://developer.apple.com/documentation/foundation/unichar?language=objc] type from <Foundation/NSString.h>. Equivalent to c_ushort.

	
class rubicon.objc.types.CGGlyph([value])

	The CGGlyph [https://developer.apple.com/documentation/coregraphics/cgglyph?language=objc] type from <CoreGraphics/CGFont.h>. Equivalent to c_ushort.

	
class rubicon.objc.types.CFRange([location, length])

	The CFRange [https://developer.apple.com/documentation/corefoundation/cfrange?language=objc] type from <CoreFoundation/CFBase.h>.

	
location

	
length

	The location and length as CFIndexes.

	
class rubicon.objc.types.NSRange([location, length])

	The NSRange [https://developer.apple.com/documentation/foundation/nsrange?language=objc] type from <Foundation/NSRange.h>.

	
location

	
length

	The location and length as NSUIntegers.

Common C constants

These are commonly used C constants from various frameworks.

	
rubicon.objc.types.UIEdgeInsetsZero

	The constant UIEdgeInsetsZero [https://developer.apple.com/documentation/uikit/uiedgeinsetszero?language=objc]: a UIEdgeInsets instance with all insets set to zero.

	
rubicon.objc.types.NSZeroPoint

	The constant NSZeroPoint [https://developer.apple.com/documentation/foundation/nszeropoint?language=objc]: a NSPoint instance with the X and Y coordinates set to zero.

	
rubicon.objc.types.NSIntegerMax

	The macro constant NSIntegerMax [https://developer.apple.com/documentation/objectivec/nsintegermax?language=objc] from <objc/NSObjCRuntime.h>: the maximum value that a NSInteger can hold.

	
rubicon.objc.types.NSNotFound

	The constant NSNotFound [https://developer.apple.com/documentation/foundation/nsnotfound?language=objc] from <Foundation/NSObjCRuntime.h>: a NSInteger sentinel value indicating that an item was not found (usually when searching in a collection).

Architecture detection constants

The following constants provide information about the architecture of the current environment. All of them are equivalent to the C compiler macros of the same names.

	
rubicon.objc.types.__LP64__

	Indicates whether the current environment is 64-bit. If true, C longs and pointers are 64 bits in size, otherwise 32 bits.

	
rubicon.objc.types.__i386__

	
rubicon.objc.types.__x86_64__

	
rubicon.objc.types.__arm__

	
rubicon.objc.types.__arm64__

	Each of these constants is true if the current environment uses the named architecture. At most one of these constants is true at once in a single Python runtime. (If the current architecture cannot be determined, all of these constants are false.)

Objective-C type encoding conversion

These functions are used to convert Objective-C type encoding strings to and from ctypes types, and to manage custom conversions in both directions.

All Objective-C encoding strings are represented as bytes rather than str.

	
rubicon.objc.types.ctype_for_encoding(encoding)

	Return the ctype corresponding to an Objective-C type encoding.

If a ctype has been registered for the encoding, that type is returned. Otherwise, if the type encoding represents
a compound type (pointer, array, structure, or union), the contained types are converted recursively. A new ctype
is then created from the converted ctypes, and is registered for the encoding (so that future conversions of the
same encoding return the same ctype).

For example, the type encoding {spam=ic} is not registered by default. However, the contained types i and
c are registered, so they are converted individually and used to create a new Structure with
two fields of the correct types. The new structure type is then registered for the original encoding {spam=ic}
and returned.

	Raises:

	ValueError – if the conversion fails at any point

	
rubicon.objc.types.encoding_for_ctype(ctype)

	Return the Objective-C type encoding for the given ctypes type.

If a type encoding has been registered for the ctype, that encoding is returned. Otherwise, if the ctype is a
pointer type, its pointed-to type is encoded and used to construct the pointer type encoding.

Automatic encoding of other compound types (arrays, structures, and unions) is currently not supported. To encode
such types, a type encoding must be manually provided for them using register_preferred_encoding() or
register_encoding().

	Raises:

	ValueError – if the conversion fails at any point

	
rubicon.objc.types.register_preferred_encoding(encoding, ctype)

	Register a preferred conversion between an Objective-C type encoding and a ctype.

“Preferred” means that any existing conversions in each direction are overwritten with the new conversion.
To register an encoding without overwriting existing conversions, use register_encoding().

	
rubicon.objc.types.with_preferred_encoding(encoding)

	Register a preferred conversion between an Objective-C type encoding and the decorated ctype.

This is equivalent to calling register_preferred_encoding() on the decorated ctype.

	
rubicon.objc.types.register_encoding(encoding, ctype)

	Register an additional conversion between an Objective-C type encoding and a ctype.

“Additional” means that any existing conversions in either direction are not overwritten with the new conversion.
To register an encoding and overwrite existing conversions, use register_preferred_encoding().

	
rubicon.objc.types.with_encoding(encoding)

	Register an additional conversion between an Objective-C type encoding and the decorated ctype.

This is equivalent to calling register_encoding() on the decorated ctype.

	
rubicon.objc.types.unregister_encoding(encoding)

	Unregister the conversion from an Objective-C type encoding to its corresponding ctype.

Note that this does not remove any conversions in the other direction (from a ctype to this encoding). These
conversions may be replaced with register_encoding(), or unregistered with unregister_ctype().
To remove all ctypes for an encoding, use unregister_encoding_all().

If the encoding was not registered previously, nothing happens.

	
rubicon.objc.types.unregister_encoding_all(encoding)

	Unregister all conversions between an Objective-C type encoding and all corresponding ctypes.

All conversions from any ctype to this encoding are removed recursively using unregister_ctype_all().

If the encoding was not registered previously, nothing happens.

	
rubicon.objc.types.unregister_ctype(ctype)

	Unregister the conversion from a ctype to its corresponding Objective-C type encoding.

Note that this does not remove any conversions in the other direction (from an encoding to this ctype). These
conversions may be replaced with register_encoding(), or unregistered with unregister_encoding().
To remove all encodings for a ctype, use unregister_ctype_all().

If the ctype was not registered previously, nothing happens.

	
rubicon.objc.types.unregister_ctype_all(ctype)

	Unregister all conversions between a ctype and all corresponding Objective-C type encodings.

All conversions from any type encoding to this ctype are removed recursively using unregister_encoding_all().

If the ctype was not registered previously, nothing happens.

	
rubicon.objc.types.get_ctype_for_encoding_map()

	Get a copy of all currently registered encoding-to-ctype conversions as a map.

	
rubicon.objc.types.get_encoding_for_ctype_map()

	Get a copy of all currently registered ctype-to-encoding conversions as a map.

	
rubicon.objc.types.split_method_encoding(encoding)

	Split a method signature encoding into a sequence of type encodings.

The first type encoding represents the return type, all remaining type encodings represent the argument types.

If there are any numbers after a type encoding, they are ignored. On PowerPC, these numbers indicated each
argument/return value’s offset on the stack. These numbers are meaningless on modern architectures.

	
rubicon.objc.types.ctypes_for_method_encoding(encoding)

	Convert a method signature encoding into a sequence of ctypes.

This is equivalent to first splitting the method signature encoding using split_method_encoding(), and then
converting each individual type encoding using ctype_for_encoding().

Default registered type encodings

The following table lists Objective-C’s standard type encodings for primitive types, and the corresponding registered
ctypes. These mappings can be considered stable, but nonetheless users should not hardcode these encodings unless
necessary. Instead, the encoding_for_ctype() function should be used to encode types, because it is less
error-prone and more readable than typing encodings out by hand.

	Ctype

	Type encoding

	Notes

	None (void)

	v

	

	c_bool

	B

	This refers to the bool type from C99 and C++. It is not necessarily the same as the BOOL type, which may be either c_byte or c_bool depending on the system and architecture.

	c_byte

	c

	

	c_ubyte

	C

	

	c_short

	s

	

	c_ushort

	S

	

	c_long

	l

	

	c_ulong

	L

	

	c_int

	i

	On 32-bit systems, c_int is an alias for c_long, and will be encoded as such.

	c_uint

	I

	On 32-bit systems, c_uint is an alias for c_ulong, and will be encoded as such.

	c_longlong

	q

	On 64-bit systems, c_longlong is an alias for c_long, and will be encoded as such.

	c_ulonglong

	Q

	On 64-bit systems, c_ulonglong is an alias for c_ulong, and will be encoded as such.

	c_float

	f

	

	c_double

	d

	

	c_longdouble

	D

	On ARM, c_longdouble is an alias for c_double, and will be encoded as such.

	c_char

	c

	Only when encoding. Decoding c produces c_byte, to allow using signed char as a boolean value.

	c_char_p

	*

	

	POINTER(c_char)

	*

	Only when encoding. Decoding * produces c_char_p for easier use of C strings.

	POINTER(c_byte)

	*

	Only when encoding. Decoding * produces c_char_p for easier use of C strings.

	POINTER(c_ubyte)

	*

	Only when encoding. Decoding * produces c_char_p for easier use of C strings.

	c_wchar

	i

	Only when encoding. Decoding i produces c_int.

	c_wchar_p

	^i

	Only when encoding. Decoding ^i produces POINTER(c_int).

	c_void_p

	^v

	

	UnknownPointer

	^?

	This encoding stands for a pointer to a type that cannot be encoded, which in practice means a function pointer.

	UnknownPointer

	^{?}, ^(?)

	Only when decoding. These encodings stand for pointers to a structure or union with unknown name and fields.

	objc_id

	@

	Class name suffixes in the encoding (e. g. @"NSString") are ignored.

	objc_block

	@?

	Block signature suffixes in the encoding (e. g. @?<v@?>) are ignored.

	SEL

	:

	

	Class

	#

	

	
class rubicon.objc.types.UnknownPointer(value=None)

	Placeholder for the “unknown pointer” types ^?, ^{?} and ^(?).

Not to be confused with a ^v void pointer.

Usually a ^? is a function pointer, but because the encoding doesn’t contain the function signature,
you need to manually create a CFUNCTYPE with the proper types, and cast this pointer to it.

^{?} and ^(?) are pointers to a structure or union (respectively) with unknown name and fields. Such a type
also cannot be used meaningfully without casting it to the correct pointer type first.

In addition, the following types defined by Rubicon are registered, but their encodings may vary depending on the system
and architecture:

	
	ctypes.py_object

	NSInteger

	NSUInteger

	CGFloat

	NSPoint

	CGPoint

	NSSize

	CGSize

	NSRect

	
	CGRect

	UIEdgeInsets

	NSEdgeInsets

	NSTimeInterval

	CFIndex

	UniChar

	unichar

	CGGlyph

	NSRange

Conversion of Python sequences to C structures and arrays

This function is used to convert a Python sequence (such as a tuple or list) to a specific C structure or array type. This function is mainly used internally by Rubicon, to allow passing Python sequences as method parameters where a C structure or array would normally be required. Most users will not need to use this function directly.

	
rubicon.objc.types.compound_value_for_sequence(seq, tp)

	Create a C structure or array of type tp, initialized with values from seq.

If tp is a Structure type, the newly created structure’s fields are initialized in declaration
order with the values from seq. seq must have as many elements as the structure has fields.

If tp is a Array type, the newly created array is initialized with the values from seq.
seq must have as many elements as the array type.

In both cases, if a structure field type or the array element type is itself a structure or array type, the
corresponding value from seq is recursively converted as well.

Python to ctypes type mapping

These functions are used to map Python types to equivalent ctypes types, and to add or remove such mappings. This mechanism is mainly used internally by Rubicon, to for example allow ObjCInstance to be used instead of objc_id in method type annotations. Most users will not need to use these functions directly.

	
rubicon.objc.types.ctype_for_type(tp)

	Look up the ctype corresponding to the given Python type.

This conversion is applied to types used in objc_method signatures, objc_ivar types, etc.
This function translates Python built-in types and rubicon.objc classes to their ctypes equivalents.
Unregistered types (including types that are already ctypes) are returned unchanged.

	
rubicon.objc.types.register_ctype_for_type(tp, ctype)

	Register a conversion from a Python type to a ctype.

	
rubicon.objc.types.unregister_ctype_for_type(tp)

	Unregister a conversion from a Python type to a ctype.

	
rubicon.objc.types.get_ctype_for_type_map()

	Get a copy of all currently registered type-to-ctype conversions as a mapping.

Default registered mappings

The following mappings are registered by default by Rubicon.

	Python type

	Ctype

	int

	c_int

	float

	c_float

	bool

	c_bool

	bytes

	c_char_p

	ObjCInstance

	objc_id

	ObjCClass

	Class

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rubicon	

 	
 	
 rubicon.objc	

 	
 	
 rubicon.objc.api	

 	
 	
 rubicon.objc.eventloop	

 	
 	
 rubicon.objc.runtime	

 	
 	
 rubicon.objc.types	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

_

 	
 	__arm64__ (in module rubicon.objc.types)

 	__arm__ (in module rubicon.objc.types)

 	__call__() (rubicon.objc.api.ObjCBlock method)

 	__contains__() (rubicon.objc.api.NSArray method)

 	(rubicon.objc.api.NSDictionary method)

 	__delitem__() (rubicon.objc.api.NSMutableArray method)

 	(rubicon.objc.api.NSMutableDictionary method)

 	__eq__() (rubicon.objc.api.NSArray method)

 	(rubicon.objc.api.NSDictionary method)

 	__getattr__() (rubicon.objc.api.ObjCInstance method)

 	__getitem__() (rubicon.objc.api.NSArray method)

 	(rubicon.objc.api.NSDictionary method)

 	__i386__ (in module rubicon.objc.types)

 	__instancecheck__() (rubicon.objc.api.ObjCClass method)

 	(rubicon.objc.api.ObjCProtocol method)

 	__iter__() (rubicon.objc.api.NSArray method)

 	(rubicon.objc.api.NSDictionary method)

 	
 	__len__() (rubicon.objc.api.NSArray method)

 	(rubicon.objc.api.NSDictionary method)

 	__LP64__ (in module rubicon.objc.types)

 	__ne__() (rubicon.objc.api.NSArray method)

 	(rubicon.objc.api.NSDictionary method)

 	__repr__() (rubicon.objc.api.ObjCInstance method)

 	__setattr__() (rubicon.objc.api.ObjCInstance method)

 	__setitem__() (rubicon.objc.api.NSMutableArray method)

 	(rubicon.objc.api.NSMutableDictionary method)

 	__str__() (rubicon.objc.api.NSString method)

 	(rubicon.objc.api.ObjCInstance method)

 	__subclasscheck__() (rubicon.objc.api.ObjCClass method)

 	(rubicon.objc.api.ObjCProtocol method)

 	__x86_64__ (in module rubicon.objc.types)

 	_as_parameter_ (rubicon.objc.api.ObjCInstance attribute)

A

 	
 	add_ivar() (in module rubicon.objc.runtime)

 	add_method() (in module rubicon.objc.runtime)

 	
 	append() (rubicon.objc.api.NSMutableArray method)

 	at() (in module rubicon.objc.api)

B

 	
 	Block (class in rubicon.objc.api)

 	
 	bottom (rubicon.objc.types.NSEdgeInsets attribute)

 	(rubicon.objc.types.UIEdgeInsets attribute)

C

 	
 	c_ptrdiff_t (class in rubicon.objc.types)

 	CFIndex (class in rubicon.objc.types)

 	CFRange (class in rubicon.objc.types)

 	CGFloat (class in rubicon.objc.types)

 	CGGlyph (class in rubicon.objc.types)

 	CGPoint (class in rubicon.objc.types)

 	CGRect (class in rubicon.objc.types)

 	CGSize (class in rubicon.objc.types)

 	Class (class in rubicon.objc.runtime)

 	
 	clear() (rubicon.objc.api.NSMutableArray method)

 	(rubicon.objc.api.NSMutableDictionary method)

 	CocoaLifecycle (class in rubicon.objc.eventloop)

 	compound_value_for_sequence() (in module rubicon.objc.types)

 	copy() (rubicon.objc.api.NSArray method)

 	(rubicon.objc.api.NSDictionary method)

 	count() (rubicon.objc.api.NSArray method)

 	ctype_for_encoding() (in module rubicon.objc.types)

 	ctype_for_type() (in module rubicon.objc.types)

 	ctypes_for_method_encoding() (in module rubicon.objc.types)

D

 	
 	debugDescription (rubicon.objc.api.NSObject attribute)

 	declare_class_property() (rubicon.objc.api.ObjCClass method)

 	
 	declare_property() (rubicon.objc.api.ObjCClass method)

 	description (rubicon.objc.api.NSObject attribute)

E

 	
 	encoding_for_ctype() (in module rubicon.objc.types)

 	
 	EventLoopPolicy (class in rubicon.objc.eventloop)

 	extend() (rubicon.objc.api.NSMutableArray method)

F

 	
 	for_objcclass() (in module rubicon.objc.api)

 	
 	Foundation (in module rubicon.objc.runtime)

G

 	
 	get() (rubicon.objc.api.NSDictionary method)

 	get_child_watcher() (rubicon.objc.eventloop.EventLoopPolicy method)

 	get_class() (in module rubicon.objc.runtime)

 	get_ctype_for_encoding_map() (in module rubicon.objc.types)

 	get_ctype_for_type_map() (in module rubicon.objc.types)

 	
 	get_default_loop() (rubicon.objc.eventloop.EventLoopPolicy method)

 	get_encoding_for_ctype_map() (in module rubicon.objc.types)

 	get_ivar() (in module rubicon.objc.api)

 	(in module rubicon.objc.runtime)

 	get_type_for_objcclass_map() (in module rubicon.objc.api)

H

 	
 	height (rubicon.objc.types.CGSize attribute)

 	(rubicon.objc.types.NSSize attribute)

I

 	
 	IMP (class in rubicon.objc.runtime)

 	index() (rubicon.objc.api.NSArray method)

 	insert() (rubicon.objc.api.NSMutableArray method)

 	
 	iOSLifecycle (class in rubicon.objc.eventloop)

 	items() (rubicon.objc.api.NSDictionary method)

 	Ivar (class in rubicon.objc.runtime)

K

 	
 	keys() (rubicon.objc.api.NSDictionary method)

L

 	
 	left (rubicon.objc.types.NSEdgeInsets attribute)

 	(rubicon.objc.types.UIEdgeInsets attribute)

 	length (rubicon.objc.types.CFRange attribute)

 	(rubicon.objc.types.NSRange attribute)

 	
 	libc (in module rubicon.objc.runtime)

 	libobjc (in module rubicon.objc.runtime)

 	load_library() (in module rubicon.objc.runtime)

 	location (rubicon.objc.types.CFRange attribute)

 	(rubicon.objc.types.NSRange attribute)

M

 	
 	Method (class in rubicon.objc.runtime)

 	
 module

 	rubicon.objc

 	rubicon.objc.api

 	rubicon.objc.eventloop

 	rubicon.objc.runtime

 	rubicon.objc.types

N

 	
 	name (rubicon.objc.api.ObjCClass attribute)

 	(rubicon.objc.api.ObjCProtocol attribute)

 	(rubicon.objc.runtime.objc_method_description attribute)

 	(rubicon.objc.runtime.objc_property_attribute_t attribute)

 	(rubicon.objc.runtime.SEL attribute)

 	new_event_loop() (rubicon.objc.eventloop.EventLoopPolicy method)

 	ns_from_py() (in module rubicon.objc.api)

 	NSArray (class in rubicon.objc.api)

 	NSData (class in rubicon.objc.api)

 	NSDecimalNumber (class in rubicon.objc.api)

 	NSDictionary (class in rubicon.objc.api)

 	NSEdgeInsets (class in rubicon.objc.types)

 	NSInteger (class in rubicon.objc.types)

 	NSIntegerMax (in module rubicon.objc.types)

 	
 	NSMutableArray (class in rubicon.objc.api)

 	NSMutableDictionary (class in rubicon.objc.api)

 	NSNotFound (in module rubicon.objc.types)

 	NSNumber (class in rubicon.objc.api)

 	NSObject (class in rubicon.objc.api)

 	NSObjectProtocol (in module rubicon.objc.api)

 	NSPoint (class in rubicon.objc.types)

 	NSRange (class in rubicon.objc.types)

 	NSRect (class in rubicon.objc.types)

 	NSSize (class in rubicon.objc.types)

 	NSString (class in rubicon.objc.api)

 	NSTimeInterval (class in rubicon.objc.types)

 	NSUInteger (class in rubicon.objc.types)

 	NSZeroPoint (in module rubicon.objc.types)

O

 	
 	objc_block (class in rubicon.objc.runtime)

 	objc_class (rubicon.objc.api.ObjCInstance attribute)

 	objc_classmethod() (in module rubicon.objc.api)

 	objc_const() (in module rubicon.objc.api)

 	objc_id (class in rubicon.objc.runtime)

 	objc_ivar() (in module rubicon.objc.api)

 	objc_method() (in module rubicon.objc.api)

 	objc_method_description (class in rubicon.objc.runtime)

 	objc_property() (in module rubicon.objc.api)

 	objc_property_attribute_t (class in rubicon.objc.runtime)

 	
 	objc_property_t (class in rubicon.objc.runtime)

 	objc_rawmethod() (in module rubicon.objc.api)

 	objc_super (class in rubicon.objc.runtime)

 	ObjCBlock (class in rubicon.objc.api)

 	ObjCClass (class in rubicon.objc.api)

 	ObjCInstance (class in rubicon.objc.api)

 	ObjCMetaClass (class in rubicon.objc.api)

 	ObjCProtocol (class in rubicon.objc.api)

 	object_isClass() (in module rubicon.objc.runtime)

 	origin (rubicon.objc.types.CGRect attribute)

 	(rubicon.objc.types.NSRect attribute)

P

 	
 	pop() (rubicon.objc.api.NSMutableArray method)

 	(rubicon.objc.api.NSMutableDictionary method)

 	popitem() (rubicon.objc.api.NSMutableDictionary method)

 	Protocol (class in rubicon.objc.api)

 	protocols (rubicon.objc.api.ObjCClass attribute)

 	(rubicon.objc.api.ObjCProtocol attribute)

 	
 	ptr (rubicon.objc.api.ObjCInstance attribute)

 	py_from_ns() (in module rubicon.objc.api)

 	
 Python Enhancement Proposals

 	PEP 468

 	PEP 517

 	PEP 518

R

 	
 	receiver (rubicon.objc.runtime.objc_super attribute)

 	register_ctype_for_type() (in module rubicon.objc.types)

 	register_encoding() (in module rubicon.objc.types)

 	register_preferred_encoding() (in module rubicon.objc.types)

 	register_type_for_objcclass() (in module rubicon.objc.api)

 	remove() (rubicon.objc.api.NSMutableArray method)

 	reverse() (rubicon.objc.api.NSMutableArray method)

 	right (rubicon.objc.types.NSEdgeInsets attribute)

 	(rubicon.objc.types.UIEdgeInsets attribute)

 	
 	
 rubicon.objc

 	module

 	
 rubicon.objc.api

 	module

 	
 rubicon.objc.eventloop

 	module

 	
 rubicon.objc.runtime

 	module

 	
 rubicon.objc.types

 	module

S

 	
 	SEL (class in rubicon.objc.runtime)

 	send_message() (in module rubicon.objc.runtime)

 	send_super() (in module rubicon.objc.runtime)

 	set_child_watcher() (rubicon.objc.eventloop.EventLoopPolicy method)

 	set_ivar() (in module rubicon.objc.api)

 	(in module rubicon.objc.runtime)

 	setdefault() (rubicon.objc.api.NSMutableDictionary method)

 	should_use_fpret() (in module rubicon.objc.runtime)

 	should_use_stret() (in module rubicon.objc.runtime)

 	
 	size (rubicon.objc.types.CGRect attribute)

 	(rubicon.objc.types.NSRect attribute)

 	split_method_encoding() (in module rubicon.objc.types)

 	start() (rubicon.objc.eventloop.CocoaLifecycle method)

 	(rubicon.objc.eventloop.iOSLifecycle method)

 	stop() (rubicon.objc.eventloop.CocoaLifecycle method)

 	(rubicon.objc.eventloop.iOSLifecycle method)

 	super_class (rubicon.objc.runtime.objc_super attribute)

 	superclass (rubicon.objc.api.ObjCClass attribute)

T

 	
 	top (rubicon.objc.types.NSEdgeInsets attribute)

 	(rubicon.objc.types.UIEdgeInsets attribute)

 	
 	type_for_objcclass() (in module rubicon.objc.api)

 	types (rubicon.objc.runtime.objc_method_description attribute)

U

 	
 	UIEdgeInsets (class in rubicon.objc.types)

 	UIEdgeInsetsZero (in module rubicon.objc.types)

 	UniChar (class in rubicon.objc.types)

 	unichar (class in rubicon.objc.types)

 	UnknownPointer (class in rubicon.objc.types)

 	unregister_ctype() (in module rubicon.objc.types)

 	
 	unregister_ctype_all() (in module rubicon.objc.types)

 	unregister_ctype_for_type() (in module rubicon.objc.types)

 	unregister_encoding() (in module rubicon.objc.types)

 	unregister_encoding_all() (in module rubicon.objc.types)

 	unregister_type_for_objcclass() (in module rubicon.objc.api)

 	update() (rubicon.objc.api.NSMutableDictionary method)

 	UTF8String (rubicon.objc.api.NSString attribute)

V

 	
 	value (rubicon.objc.runtime.objc_property_attribute_t attribute)

 	
 	values() (rubicon.objc.api.NSDictionary method)

W

 	
 	width (rubicon.objc.types.CGSize attribute)

 	(rubicon.objc.types.NSSize attribute)

 	
 	with_encoding() (in module rubicon.objc.types)

 	with_preferred_encoding() (in module rubicon.objc.types)

X

 	
 	x (rubicon.objc.types.CGPoint attribute)

 	(rubicon.objc.types.NSPoint attribute)

Y

 	
 	y (rubicon.objc.types.CGPoint attribute)

 	(rubicon.objc.types.NSPoint attribute)

 _static/images/rubicon.png

_static/plus.png

_static/file.png

_static/minus.png

_static/rubicon.png

nav.xhtml

 Table of Contents

 		
 Rubicon Objective-C

