
Rubicon Documentation
Release 0.3.0

Russell Keith-Magee

Jan 23, 2023

CONTENTS

1 Table of contents 3
1.1 Tutorial . 3
1.2 How-to guides . 3
1.3 Background . 3
1.4 Reference . 3

2 Community 5
2.1 Tutorials . 5
2.2 How-to Guides . 9
2.3 Background . 15
2.4 Reference . 20

i

ii

Rubicon Documentation, Release 0.3.0

Rubicon Objective-C is a bridge between Objective-C and Python. It enables you to:

• Use Python to instantiate objects defined in Objective-C,

• Use Python to invoke methods on objects defined in Objective-C, and

• Subclass and extend Objective-C classes in Python.

It also includes wrappers of the some key data types from the Foundation framework (e.g., NSString).

CONTENTS 1

Rubicon Documentation, Release 0.3.0

2 CONTENTS

CHAPTER

ONE

TABLE OF CONTENTS

1.1 Tutorial

Get started with a hands-on introduction for beginners

1.2 How-to guides

Guides and recipes for common problems and tasks, including how to contribute

1.3 Background

Explanation and discussion of key topics and concepts

1.4 Reference

Technical reference - commands, modules, classes, methods

3

Rubicon Documentation, Release 0.3.0

4 Chapter 1. Table of contents

CHAPTER

TWO

COMMUNITY

Rubicon is part of the BeeWare suite. You can talk to the community through:

• @pybeeware on Twitter

• pybee/general on Gitter

2.1 Tutorials

These tutorials are step-by step guides for using Briefcase.

2.1.1 Your first bridge

In this example, we’re going to use Rubicon to access the Objective-C Foundation library, and the NSURL class in that
library. NSURL is the class used to represent and manipulate URLs.

This tutorial assumes you’ve set up your environment as described in the Getting started guide.

Accessing NSURL

Start Python, and get a reference to an Objective-C class. In this example, we’re going to use the NSURL class,
Objective-C’s representation of URLs:

>>> from rubicon.objc import ObjCClass
>>> NSURL = ObjCClass("NSURL")

This gives us an NSURL class in Python which is transparently bridged to the NSURL class in the Objective-C runtime.
Any method or property described in Apple’s documentation on NSURL can be accessed over this bridge.

Let’s create an instance of an NSURL object. The NSURL documentation describes a static constructor +URLWith-
String:; we can invoke this constructor as:

>>> base = NSURL.URLWithString("http://pybee.org/")

That is, the name of the method in Python is identical to the method in Objective-C. The first argument is declared as
being an NSString *; Rubicon converts the Python str into an NSString instance as part of invoking the method.

NSURL has another static constructor: +URLWithString:relativeToURL:. We can also invoke this constructor:

>>> full = NSURL.URLWithString("contributing/", relativeToURL=base)

5

http://pybee.org
https://twitter.com/pybeeware
https://gitter.im/pybee/general
https://developer.apple.com/reference/foundation/nsurl?language=objc

Rubicon Documentation, Release 0.3.0

The second argument (relativeToURL) is accessed as a keyword argument. This argument is declared as being of type
NSURL *; since base is an instance of NSURL, Rubicon can pass through this instance.

Sometimes, an Objective-C method definition will use the same keyword argument name twice. This is legal in
Objective-C, but not in Python, as you can’t repeat a keyword argument in a method call. In this case, you can use
a “long form” of the method to explicitly invoke a descriptor by replacing colons with underscores:

>>> base = NSURL.URLWithString_("http://pybee.org/")
>>> full = NSURL.URLWithString_relativeToURL_("contributing", base)

Instance methods

So far, we’ve been using the +URLWithString: static constructor. However, NSURL also provides an initializer method
-initWithString:. To use this method, you first have to instruct the Objective-C runtime to allocate memory for the
instance, then invoke the initializer:

>>> base = NSURL.alloc().initWithString("http://pybee.org/")

Now that you have an instance of NSURL, you’ll want to manipulate it. NSURL describes an absoluteURL property;
this property can be accessed as a Python attribute:

>>> absolute = full.absoluteURL

You can also invoke methods on the instance:

>>> longer = absolute.URLByAppendingPathComponent('how/first-time/')

If you want to output an object at the console, you can use the Objective-C property description, or for debugging
output, debugDescription:

>>> longer.description
'http://pybee.org/contributing/how/first-time/'

>>> longer.debugDescription
'http://pybee.org/contributing/how/first-time/>'

Internally, description and debugDescription are hooked up to their Python equivalents, __str__() and __repr__(),
respectively:

>>> str(absolute)
'http://pybee.org/contributing/how/first-time/'

>>> repr(absolute)
'<rubicon.objc.api.ObjCInstance 0x1114a3cf8: NSURL at 0x7fb2abdd0b20: http://pybee.org/
→˓contributing/>'

>>> print(absolute)
<rubicon.objc.api.ObjCInstance 0x1114a3cf8: NSURL at 0x7fb2abdd0b20: http://pybee.org/
→˓contributing/>

6 Chapter 2. Community

Rubicon Documentation, Release 0.3.0

Time to take over the world!

You now have access to any method, on any class, in any library, in the entire macOS or iOS ecosystem! If you can
invoke something in Objective-C, you can invoke it in Python - all you need to do is:

• load the library with ctypes;

• register the classes you want to use; and

• Use those classes as if they were written in Python.

Next steps

The next step is to write your own classes, and expose them into the Objective-C runtime. That’s the subject of the next
tutorial.

2.1.2 Tutorial 2 - Writing your own class

Eventually, you’ll come across an Objective-C API that requires you to provide a class instance as an argument. For
example, when using macOS and iOS GUI classes, you often need to define “delegate” classes to describe how a GUI
element will respond to mouse clicks and key presses.

Let’s define a Handler class, with two methods:

• an -initWithValue: constructor that accepts an integer; and

• a -pokeWithValue:andName: method that accepts an integer and a string, prints the string, and returns a float
that is one half of the value.

The declaration for this class would be:

from rubicon.objc import NSObject, objc_method

class Handler(NSObject):
@objc_method
def initWithValue_(self, v: int):

self.value = v
return self

@objc_method
def pokeWithValue_andName_(self, v: int, name) -> float:

print("My name is", name)
return v / 2.0

This code has several interesting implementation details:

• The Handler class extends NSObject. This instructs Rubicon to construct the class in a way that it can be regis-
tered with the Objective-C runtime.

• Each method that we want to expose to Objective-C is decorated with @objc_method.The method names match
the Objective-C descriptor that you want to expose, but with colons replaced by underscores. This matches the
“long form” way of invoking methods discussed in Your first bridge.

• The v argument on initWithValue_() uses a Python 3 type annotation to declare it’s type. Objective-C is a language
with static typing, so any methods defined in Python must provide this typing information. Any argument that
isn’t annotated is assumed to be of type id - that is, a pointer to an Objective-C object.

2.1. Tutorials 7

Rubicon Documentation, Release 0.3.0

• The pokeWithValue_andName_() method has it’s integer argument annotated, and has it’s return type annotated
as float. Again, this is to support Objective-C typing operations. Any function that has no return type annotation
is assumed to return id. A return type annotation of None will be interpreted as a void method in Objective-C.
The name argument doesn’t need to be annotated because it will be passed in as a string, and strings are NSObject
subclasses in Objective-C.

• initWithValue_() is a constructor, so it returns self.

Having declared the class, you can then instantiate and use it:

>>> my_handler = Handler.alloc().initWithValue(42)
>>> print(my_handler.value)
42
>>> print(my_handler.pokeWithValue(37, andName="Alice"))
My name is Alice
18.5

Objective-C properties

When we defined the initializer for Handler, we stored the provided value as the value attribute of the class. However,
as this attribute wasn’t declared to Objective-C, it won’t be visible to the Objective-C runtime. You can access value
from within Python - but Objective-C code won’t be able to access it.

To expose value to the Objective-C runtime, we need to make one small change, and explicitly declare value as an
Objective-C property:

from rubicon.objc import NSObject, objc_method, objc_property()

class PureHandler(NSObject):
value = objc_property()

@objc_method
def initWithValue_(self, v: int):

self.value = v
return self

This doesn’t change anything about how you access or modify the attribute - it just means that Objective-C code will
be able to see the attribute as well.

Class naming

In this revised example, you’ll note that we also used a different class name - PureHandler. This was deliberate, because
Objective-C doesn’t have any concept of namespaces. As a result, you can only define one class of any given name in a
process - so, you wont be able to define a second Handler class in the same Python shell. If you try, you’ll get an error:

>>> class Handler(NSObject):
... pass
Traceback (most recent call last)
...
RuntimeError: ObjC runtime already contains a registered class named 'Handler'.

You’ll need to be careful (and sometimes, painfully verbose) when choosing class names.

8 Chapter 2. Community

Rubicon Documentation, Release 0.3.0

What, no __init__()?

You’ll also notice that our example code doesn’t have an __init__() method like you’d normally expect of Python code.
As we’re defining an Objective-C class, we need to follow the Objective-C object lifecycle - which means defining
initializer methods that are visible to the Objective-C runtime, and invoking them over that bridge.

Next steps

???

2.1.3 Tutorial 1 - Your first bridge

In Your first bridge, you will use Rubicon to invoke an existing Objective-C library on your computer.

2.1.4 Tutorial 2 - Writing your own class

In Tutorial 2 - Writing your own class, you will write a Python class, and expose it to the Objective-C runtime.

2.2 How-to Guides

How-to guides are recipes that take the user through steps in key subjects. They are more advanced than tutorials and
assume a lot more about what the user already knows than tutorials do, and unlike documents in the tutorial they can
stand alone.

2.2.1 How to get started

To use Rubicon, create a new virtual environment, and install it:

$ python3 -m venv venv
$ source venv/bin/activate.sh
(venv) $ pip install rubicon-objc

You’re now ready to use Rubicon! Your next step is to work through the Tutorials, which will take you step-by-step
through your first steps and introduce you to the important concepts you need to become familiar with.

2.2.2 You’re just not my type: Using Objective-C types in Python

Objective-C is a strong, static typed language. Every variable has a specific type, and that type cannot change over
time. If a function declares that it accepts an integer, then it must receive a variable that is declared as an integer, or an
expression that results in an integer.

Python, on the other hand, is strong, but dynamically typed language. Every variable has a specific type, but that type
can be modified or interpreted in other ways. When a function accepts an argument, Python will allow you to pass any
variable, of any type.

So, if you want to bridge between Objective-C and Python, you need to be able to provide static typing information
so that Python can work out how to convert a variable of arbitrary type into a specific type matching Objective-C’s
expectations.

2.2. How-to Guides 9

Rubicon Documentation, Release 0.3.0

If you’re calling an Objective C method defined in a library, this conversion is done automatically - the Objective-
C runtime contains enough information for Rubicon to infer the required types. However, if you’re defining a new
method (or a method override) in Python, we need to provide that typing information. To do this, we use Python 3’s
type annotation. Here’s how.

Primitives

If a Python value needs to be passed in as a primitive, Rubicon will wrap the primitive:

Value C primitive
bool 8 bit integer (although it can only hold 2 values - 0 and 1)
int 32 bit integer
float double precision floating point

If a Python value needs to be passed in as an object, Rubicon will wrap the primitive in an object:

Value Objective C type
bool NSNumber (bool)
int NSNumber (long)
float NSNumber (double)

If you’re declaring a method and need to annotate the type of an argument, the Python type name can be used as
the annotation type. You can also use any of the ctypes primitive types. Rubicon also provides type definitions for
common Objective-C typedefs, like NSInteger, CGFloat, and so on.

Strings

If a method calls for an NSString argument, you can provide a Python str for that argument. Rubicon will construct
an NSString instance from the data in the str provided, and pass that value for the argument.

If a method returns an NSString, the return value will be a wrapped ObjCStrInstance type. This type implements
a str-like interface, wrapped around the underlying NSString data. This means you can treat the return value as if it
were a string - slicing it, concatenating it with other strings, comparing it, and so on:

Call an Objective C method that returns a string.
We're using NSBundle to give us a string version of a path
>>> NSBundle.mainBundle.bundlePath
<rubicon.objc.collections.ObjCStrInstance 0x114a94d68: __NSCFString at 0x7fec8ba7fbd0: /
→˓Users/brutus/path/to/somewhere>

Slice the Objective C string
>>> NSBundle.mainBundle.bundlePath[:14]
<rubicon.objc.collections.ObjCStrInstance 0x114aa80f0: __NSCFString at 0x7fec8ba7fbd0: /
→˓Users/brutus/>

Note that ObjCStrInstance objects behave slightly differently than Python str objects in some cases. For technical
reasons, ObjCStrInstance objects are not hashable, which means they cannot be used as dict keys (but they can be
used as NSDictionary keys). ObjCStrInstance also handles Unicode code points above U+FFFF differently than
Python str, because the underlying NSString is based on UTF-16.

If you have an ObjCStrInstance instance, and you need to pass that instance to a method that does a specific typecheck
for str, you can use str(nsstring) to convert the ObjCStrInstance instance to str:

10 Chapter 2. Community

Rubicon Documentation, Release 0.3.0

Convert the Objective C string to a Python string.
>>> str(NSBundle.mainBundle.bundlePath)
'/Users/rkm/projects/beeware/venv3.6/bin'

Conversely, if you have a str, and you specifically require a ObjCStrInstance instance, you can use the at()method
to convert the Python instance to an ObjCStrInstance.

>>> from rubicon.objc import at
Create a Python string
>>> py_str = 'hello world'

Convert to an Objective C string >>> at(py_str) <rubicon.objc.collections.ObjCStrInstance
0x114a94e48: __NSCFString at 0x7fec8ba7fc10: hello world>

ObjCStrInstance implements all the utility methods that are available on str, such as replace and split. When
these methods return a string, the implementation may return Python str or ObjCStrInstance instances. If you need
to use the return value from these methods, you should always use str() to ensure you have a Python string:

Is the path comprised of all lowercase letters? (Hint: it isn't)
>>> NSBundle.mainBundle.bundlePath.islower()
False

Convert string to lower case; use str() to ensure we get a Python string.
>>> str(NSBundle.mainBundle.bundlePath.lower())
'/users/rkm/projects/beeware/venv3.6/bin'

Lists

If a method calls for an NSArray or NSMutableArray argument, you can provide a Python list for that argument.
Rubicon will construct an NSMutableArray instance from the data in the list provided, and pass that value for the
argument.

If a method returns an NSArray or NSMutableArray, the return value will be a wrapped ObjCListInstance type.
This type implements a list-like interface, wrapped around the underlying NSArray data. This means you can treat
the return value as if it were a list - iterating over values, retrieving objects by index, and so on.

Dictionaries

If a method calls for an NSDictionary or NSMutableDictionary argument, you can provide a Python dict. Rubicon
will construct an NSMutableDictionary instance from the data in the dict provided, and pass that value for the
argument.

If a method returns an NSDictionary or NSMutableDictionary, the return value will be a wrapped
ObjCDictInstance type. This type implements a dict-like interface, wrapped around the underlying NSDictionary
data. This means you can treat the return value as if it were a dict - iterating over keys, values or items, retrieving objects
by key, and so on.

2.2. How-to Guides 11

Rubicon Documentation, Release 0.3.0

NSPoint, NSSize, and NSRect

On instances of an Objective C structure, each field is exposed as a Python attribute. For example, if you create an
instance of an NSSize object you can access its width and height by calling NSSize.width().

When you need to pass an Objective C structure to an Objective C method, you can pass a tuple instead. For example,
if you pass (10.0, 5.1) where a NSSize is expected, it will be converted automatically in the appropriate width, height
for the structure.

2.2.3 Using and creating Objective-C protocols

Protocols are used in Objective-C to declare a set of methods and properties for a class to implement. They have a
similar purpose to ABCs (abstract base classes) in Python.

Looking up a protocol

Protocol objects can be looked up using the ObjCProtocol constructor, similar to how classes can be looked up using
ObjCClass:

>>> NSCopying = ObjCProtocol('NSCopying')
>>> NSCopying
<rubicon.objc.api.ObjCProtocol: NSCopying at 0x7fff76543210>

The isinstance function can be used to check whether an object conforms to a protocol:

>>> isinstance(NSObject.new(), NSCopying)
False
>>> isinstance(NSArray.array(), NSCopying)
True

Implementing a protocol

When writing a custom Objective-C class, you might want to have it conform to one or multiple protocols. In Rubi-
con, this is done by using the protocols keyword argument in the base class list. For example, if you have a class
UserAccount and want it to conform to NSCopyable, you would write it like this:

class UserAccount(NSObject, protocols=[NSCopying]):
username = objc_property()
emailAddress = objc_property()

@objc_method
def initWithUsername_emailAddress_(self, username, emailAddress):

self = self.init()
if self is None:

return None
self.username = username
self.emailAddress = emailAddress
return self

This method is required by NSCopying.
The "zone" parameter is obsolete and can be ignored, but must be included for␣

(continues on next page)

12 Chapter 2. Community

Rubicon Documentation, Release 0.3.0

(continued from previous page)

→˓backwards compatibility.
This method is not normally used directly. Usually you call the copy method␣

→˓instead,
which calls copyWithZone: internally.
@objc_method
def copyWithZone_(self, zone):

return UserAccount.alloc().initWithUsername(self.username, emailAddress=self.
→˓emailAddress)

We can now use our class. The copy method (which uses our implemented copyWithZone: method) can also be
used:

>>> ua = UserAccount.alloc().initWithUsername_emailAddress_(at('person'), at(
→˓'person@example.com'))
>>> ua
<rubicon.objc.api.ObjCInstance 0x106543210: UserAccount at 0x106543220: <UserAccount:␣
→˓0x106543220>>
>>> ua.copy()
<rubicon.objc.api.ObjCInstance 0x106543210: UserAccount at 0x106543220: <UserAccount:␣
→˓0x106543220>>

And we can check that the class conforms to the protocol:

>>> isinstance(ua, NSCopying)
True

Writing custom protocols

You can also create custom protocols. This works similarly to creating custom Objective-C classes:

class Named(metaclass=ObjCProtocol):
name = objc_property()

@objc_method
def sayName(self):

...

There are two notable differences between creating classes and protocols:

1. Protocols do not need to extend exactly one other protocol - they can also extend multiple protocols, or none at
all. When not extending other protocols, as is the case here, we need to explicitly add metaclass=ObjCProtocol
to the base class list, to tell Python that this is a protocol and not a regular Python class. When extending other
protocols, Python detects this automatically. 2. Protocol methods do not have a body. Python has no dedicated syntax
for functions without a body, so we put ... in the body instead. (You could technically put code in the body, but this
would be misleading and is not recommended.)

2.2. How-to Guides 13

Rubicon Documentation, Release 0.3.0

2.2.4 Asynchronous Programming with Rubicon

One of the banner features of Python 3 is the introduction of native asychronous programming, implemented in the
asyncio.

For an introduction to the use of asynchronous programming, see the documentation for the asyncio module
<https://docs.python.org/3/library/asyncio.html>, or this introductory tutorial to asynchronous programming with
asyncio <http://asyncio.readthedocs.io/en/latest/index.html>.

Integrating asyncio with CoreFoundation

The asyncio module provides an event loop to coordinate asynchronous features. However, if you’re running an Ob-
jective C GUI applicaiton, you probably already have an event loop - the one provided by CoreFoundation. This
CoreFoundation event loop is then wrapped by NSApplication or UIApplication in end-user code.

However, you can’t have two event loops running at the same time, so you need a way to integrate the two. Luckily,
asyncio provides a way to customize it’s event loop so it can be integrated with other event sources.

It does this using an Event Loop Policy. Rubicon provides an Core Foundation Event Loop Policy that inserts Core
Foundation event handling into the asyncio event loop.

To use asyncio in a pure Core Foundation application, do the following:

Import the Event Loop Policy
from rubicon.objc.async import EventLoopPolicy

Install the event loop policy
asyncio.set_event_loop_policy(EventLoopPolicy())

Get an event loop, and run it!
loop = asyncio.get_event_loop()
loop.run_forever()

The last call (loop.run_forever()) will, as the name suggests, run forever - or, at least, until an event handler calls
loop.stop() to terminate the event loop.

Integrating asyncio with AppKit and NSApplication

If you’re using AppKit and NSApplication, you don’t just need to start the CoreFoundation event loop - you need to start
the full NSApplication lifecycle. To do this, you pass the application instance into the call to loop.run_forever():

Import the Event Loop Policy and lifecycle
from rubicon.objc.async import EventLoopPolicy, CocoaLifecycle

Install the event loop policy
asyncio.set_event_loop_policy(EventLoopPolicy())

Get a handle to the shared NSApplication
from ctypes import cdll, util
from rubicon.objc import ObjCClass

appkit = cdll.LoadLibrary(util.find_library('AppKit'))
NSApplication = ObjCClass('NSApplication')
app = NSApplication.sharedApplication()

(continues on next page)

14 Chapter 2. Community

Rubicon Documentation, Release 0.3.0

(continued from previous page)

Get an event loop, and run it, using the NSApplication!
loop = asyncio.get_event_loop()
loop.run_forever(lifecycle=CocoaLifecycle(app))

Again, this will run “forever” – until either loop.stop() is called, or terminate: is invoked on the NSApplication.

2.2.5 How to contribute to Rubicon

If you experience problems with Rubicon, log them on GitHub. If you want to contribute code, please fork the code
and submit a pull request.

Set up your development environment

The recommended way of setting up your development environment for Rubicon is to install a virtual environment,
install the required dependencies and start coding:

$ python3 -m venv venv
$ source venv/bin/activate.sh
$ git clone git@github.com:pybee/rubicon-objc.git
$ cd rubicon-objc
$ pip install -e .

In order to test the capabilities of Rubicon, the test suite contains an Objective-C library with some known classes. To
run the test suite, you’ll need to compile this library:

$ make

This will produce tests/objc/librubiconharness.dylib.

In order for Rubicon to find this file, it will need to be on your dynamic library path. You can set this by setting an
environment variable:

$ export DYLD_LIBRARY_PATH=$(pwd)/tests/objc

You can then run the test suite:

$ python setup.py test

Now you are ready to start hacking on Rubicon. Have fun!

2.3 Background

Want to know more about the Rubicon project, it’s history, community, and plans for the future? That’s what you’ll
find here!

2.3. Background 15

https://github.com/pybee/rubicon-objc/issues
https://github.com/pybee/rubicon-objc
https://github.com/pybee/rubicon-objc/pulls

Rubicon Documentation, Release 0.3.0

2.3.1 Why “Rubicon”?

So. . . why the name Rubicon?

The Rubicon is a river in Italy. It was of importance in ancient times as the border of Rome. The Roman Army was
prohibited from crossing this border, as that would be considered a hostile act against the Roman Senate.

In 54 BC, Julius Caesar marched the Roman Army across the Rubicon, signaling his intention to overthrow the Roman
Senate. As he did so, legend says he uttered the words “Alea Iacta Est” - The die is cast. This action led to Julius being
crowned as Emperor of Rome, and the start of the Roman Empire.

Of course, in order to cross any river, you need to use a bridge.

This project provides a bridge between the open world of the Python ecosystem, and the walled garden of Apple’s
Objective-C ecosystem.

2.3.2 The Rubicon Objective-C Developer and User community

Rubicon Objective-C is part of the BeeWare suite. You can talk to the community through:

• @pybeeware on Twitter

• The pybee/general channel on Gitter.

Code of Conduct

The BeeWare community has a strict Code of Conduct. All users and developers are expected to adhere to this code.

If you have any concerns about this code of conduct, or you wish to report a violation of this code, please contact the
project founder Russell Keith- Magee.

Contributing

If you experience problems with Rubicon, log them on GitHub. If you want to contribute code, please fork the code
and submit a pull request.

2.3.3 Success Stories

Want to see examples of Rubicon in use? Here’s some:

• Travel Tips is an app in the iOS App Store that uses Rubicon to access the iOS UIKit libraries.

2.3.4 Release History

0.3.0

• Added Pythonic operators and methods on NSString objects, similar to those for NSArray and NSDictionary.
* Only a small subset of the standard str methods is supported at the moment. Additional str methods may be
implemented in the future, but some methods (like format) will never be supported, as they cannot be imple-
mented efficiently based on NSString.

16 Chapter 2. Community

http://pybee.org
https://twitter.com/pybeeware
https://gitter.im/pybee/general
http://pybee.org/contributing/index.html
https://github.com/pybee/rubicon-objc/issues
https://github.com/pybee/rubicon-objc
https://github.com/pybee/rubicon-objc/pulls
https://itunes.apple.com/au/app/travel-tips/id1336372310

Rubicon Documentation, Release 0.3.0

• Removed automatic conversion of NSString objects to str when returned from Objective-C methods. This
feature made it difficult to call Objective-C methods on NSString objects, because there was no easy way to
prevent the automatic conversion. * In most cases, this change will not affect existing code, because NSString
objects now support operations similar to str. * If an actual str object is required, the NSString object can be
wrapped in a str call to convert it.

• Added support for objc_property with non-object types.

• Added public get_ivar and set_ivar functions for manipulating ivars.

• Changed the implementation of objc_property to use ivars instead of Python attributes for storage. This fixes
name conflicts in some situations.

• Fixed objc_property setters on non-macOS platforms. (cculianu)

• Fixed various bugs in the collection ObjCInstance subclasses: * Fixed getting/setting/deleting items or slices
with indices lower than -len(obj). Previously this crashed Python, now an IndexError is raised. * Fixed slices
with step size 0. Previously they were ignored and 1 was incorrectly used as the step size, now an IndexError is
raised. * Fixed equality checks between Objective-C arrays/dictionaries and non-sequence/mapping objects. Pre-
viously this incorrectly raised a TypeError, now it returns False. * Fixed equality checks between Objective-C
arrays and sequences of different lengths. Previously this incorrectly returned True if the shorter sequence was
a prefix of the longer one, now False is returned. * Fixed calling popitem on an empty Objective-C dictionary.
Previously this crashed Python, now a KeyError is raised. * Fixed calling update with both a mapping and
keyword arguments on an Objective-C dictionary. Previously the kwargs were incorrectly ignored if a mapping
was given, now both are respected.

• Fixed calling methods using kwarg syntax if a superclass and subclass define methods with the same pre-
fix, but different names. For example, if a superclass had a method initWithFoo:bar: and the subclass
initWithFoo:spam:, the former could not be called on instances of the subclass.

0.2.10

• Rewrote almost all Core Foundation-based functions to use Foundation instead. * The functions from_value
and NSDecimalNumber.from_decimal have been removed and replaced by ns_from_py. * The function at
is now an alias for ns_from_py. * The function is_str has been removed. is_str(obj) calls should be
replaced with isinstance(obj, NSString). * The functions to_list, to_number, to_set, to_str, and
to_value have been removed and replaced by py_from_ns.

• Fixed declare_property not applying to subclasses of the class it was called on.

• Fixed repr of ObjCBoundMethod when the wrapped method is not an ObjCMethod.

• Fixed the encodings of NSPoint, NSSize, and NSRect on 32-bit systems.

• Renamed the async support package to eventloop to avoid a Python 3.5+ keyword clash.

0.2.9

• Improved handling of boolean types.

• Added support for using primitives as object values (e.g, as the key/value in an NSDictonary).

• Added support for passing Python lists as Objective-C NSArray arguments, and Python dicts as Objective-C
NSDictionary arguments.

• Corrected support to storing strings and other objects as properties on Python-defined Objective-C classes.

• Added support for creating Objective-C blocks from Python callables. (ojii)

2.3. Background 17

Rubicon Documentation, Release 0.3.0

• Added support for returning compound values (structures and unions) from Objective-C methods defined in
Python.

• Added support for creating, extending and conforming to Objective-C protocols.

• Added an objc_const convenience function to look up global Objective-C object constants in a DLL.

• Added support for registering custom ObjCInstance subclasses to be used to represent Objective-C objects of
specific classes.

• Added support for integrating NSApplication and UIApplication event loops with Python’s asyncio event loop.

0.2.8

• Added support for using native Python sequence/mapping syntax with NSArray and NSDictionary. (jeamland)

• Added support for calling Objective-C blocks in Python. (ojii)

• Added functions for declaring custom conversions between Objective-C type encodings and ctypes types.

• Added functions for splitting and decoding Objective-C method signature encodings.

• Added automatic conversion of Python sequences to C arrays or structures in method arguments.

• Extended the Objective-C type encoding decoder to support block types, bit fields (in structures), typed object
pointers, and arbitrary qualifiers. If unknown pointer, array, struct or union types are encountered, they are
created and registered on the fly.

• Changed the PyObjectEncoding to match the real definition of PyObject *.

• Fixed the declaration of unichar (was previously c_wchar, is now c_ushort).

• Removed the get_selector function. Use the SEL constructor instead.

• Removed some runtime function declarations that are deprecated or unlikely to be useful.

• Removed the encoding constants. Use encoding_for_ctype to get the encoding of a type.

0.2.7

• (#40) Added the ability to explicitly declare no-attribute methods as properties. This is to enable a workaround
when Apple introduces readonly properties as a way to access these methods.

0.2.6

• Added a more compact syntax for calling Objective-C methods, using Python keyword arguments. (The old
syntax is still fully supported and will not be removed; certain method names even require the old syntax.)

• Added a superclass property to ObjCClass.

18 Chapter 2. Community

Rubicon Documentation, Release 0.3.0

0.2.5

• Added official support for Python 3.6.

• Added keyword arguments to disable argument and/or return value conversion when calling an Objective-C
method.

• Added support for (NS/UI) EdgeInsets structs. (Longhanks)

• Improved str of Objective-C classes and objects to return the debugDescription, or for NSStrings, the string
value.

• Changed ObjCClass to extend ObjCInstance (in addition to type), and added an ObjCMetaClass class to
represent metaclasses.

• Fixed some issues on non-x86_64 architectures (i386, ARM32, ARM64).

• Fixed example code in README. (Dayof)

• Removed the last of the Python 2 compatibility code.

0.2.4

• Added objc_property function for adding properties to custom Objective-C subclasses. (Longhanks)

0.2.3

• Removed most Python 2 compatibility code.

0.2.2

• Dropped support for Python 3.3.

• Added conversion of Python enum.Enum objects to their underlying values when passed to an Objective-C
method.

• Added syntax highlighting to example code in README. (stsievert)

• Fixed the setup.py shebang line. (uranusjr)

0.2.1

• Fixed setting of ObjCClass/ObjCInstance attributes that are not Objective-C properties.

0.2.0

• First beta release.

• Dropped support for Python 2. Python 3 is now required, the minimum tested version is Python 3.3.

• Added error detection when attempting to create an Objective-C class with a name that is already in use.

• Added automatic conversion between Python decimal.Decimal and Objective-C NSDecimal in method argu-
ments and return values.

• Added PyPy to the list of test platforms.

2.3. Background 19

Rubicon Documentation, Release 0.3.0

• When subclassing Objective-C classes, the return and argument types of methods are now specified using Python
type annotation syntax and ctypes types.

• Improved property support.

0.1.3

• Fixed some issues on ARM64 (iOS 64-bit).

0.1.2

• Fixed NSString conversion in a few situations.

• Fixed some issues on iOS and 32-bit platforms.

0.1.1

• Objective-C classes can now be subclassed using Python class syntax, by using an ObjCClass as the superclass.

• Removed ObjCSubclass, which is made obsolete by the new subclassing syntax.

0.1.0

• Initial alpha release.

• Objective-C classes and instances can be accessed via ObjCClass and ObjCInstance.

• Methods can be called on classes and instances with Python method call syntax.

• Properties can be read and written with Python attribute syntax.

• Method return and argument types are read automatically from the method type encoding.

• A small number of commonly used structs are supported as return and argument types.

• Python strings are automatically converted to and from NSString when passed to or returned from a method.

• Subclasses of Objective-C classes can be created with ObjCSubclass.

2.3.5 Rubicon Roadmap

2.4 Reference

This is the technical reference for public APIs provided by Rubicon.

20 Chapter 2. Community

	Table of contents
	Tutorial
	How-to guides
	Background
	Reference

	Community
	Tutorials
	Your first bridge
	Accessing NSURL
	Instance methods
	Time to take over the world!
	Next steps

	Tutorial 2 - Writing your own class
	Objective-C properties
	Class naming
	What, no __init__()?
	Next steps

	Tutorial 1 - Your first bridge
	Tutorial 2 - Writing your own class

	How-to Guides
	How to get started
	You’re just not my type: Using Objective-C types in Python
	Primitives
	Strings
	Lists
	Dictionaries
	NSPoint, NSSize, and NSRect

	Using and creating Objective-C protocols
	Looking up a protocol
	Implementing a protocol
	Writing custom protocols

	Asynchronous Programming with Rubicon
	Integrating asyncio with CoreFoundation
	Integrating asyncio with AppKit and NSApplication

	How to contribute to Rubicon
	Set up your development environment

	Background
	Why “Rubicon”?
	So… why the name Rubicon?

	The Rubicon Objective-C Developer and User community
	Code of Conduct
	Contributing

	Success Stories
	Release History
	0.3.0
	0.2.10
	0.2.9
	0.2.8
	0.2.7
	0.2.6
	0.2.5
	0.2.4
	0.2.3
	0.2.2
	0.2.1
	0.2.0
	0.1.3
	0.1.2
	0.1.1
	0.1.0

	Rubicon Roadmap

	Reference

