

Rubicon Objective-C

Rubicon Objective-C is a bridge between Objective-C and Python. It enables you
to:

	Use Python to instantiate objects defined in Objective-C,

	Use Python to invoke methods on objects defined in Objective-C, and

	Subclass and extend Objective-C classes in Python.

It also includes wrappers of the some key data types from the Foundation
framework (e.g., NSString).

Table of contents

Tutorial

Get started with a hands-on introduction for beginners

How-to guides

Guides and recipes for common problems and tasks, including how to contribute

Background

Explanation and discussion of key topics and concepts

Reference

Technical reference - commands, modules, classes, methods

Community

Rubicon is part of the BeeWare suite [http://pybee.org]. You can talk to the community through:

	@pybeeware on Twitter [https://twitter.com/pybeeware]

	pybee/general on Gitter [https://gitter.im/pybee/general]

Tutorials

These tutorials are step-by step guides for using Briefcase.

	Your first bridge

	Tutorial 2 - Writing your own class

Tutorial 1 - Your first bridge

In Your first bridge, you will use Rubicon to invoke an existing Objective-C library on your computer.

Tutorial 2 - Writing your own class

In Tutorial 2 - Writing your own class, you will write a Python class, and expose it to the Objective-C runtime.

Your first bridge

In this example, we’re going to use Rubicon to access the Objective-C
Foundation library, and the NSURL class in that library. NSURL is the
class used to represent and manipulate URLs.

This tutorial assumes you’ve set up your environment as described in the
Getting started guide.

Accessing NSURL

Start Python, and get a reference to an Objective-C class. In this example,
we’re going to use the NSURL class, Objective-C’s representation of URLs:

>>> from rubicon.objc import ObjCClass
>>> NSURL = ObjCClass("NSURL")

This gives us an NSURL class in Python which is transparently bridged to the
NSURL class in the Objective-C runtime. Any method or property described in
Apple’s documentation on NSURL [https://developer.apple.com/reference/foundation/nsurl?language=objc] can be accessed over this bridge.

Let’s create an instance of an NSURL object. The NSURL documentation
describes a static constructor +URLWithString:; we can invoke this
constructor as:

>>> base = NSURL.URLWithString("http://pybee.org/")

That is, the name of the method in Python is identical to the method in
Objective-C. The first argument is declared as being an NSString *; Rubicon
converts the Python str into an NSString instance as part of invoking the
method.

NSURL has another static constructor: +URLWithString:relativeToURL:. We
can also invoke this constructor:

>>> full = NSURL.URLWithString("contributing/", relativeToURL=base)

The second argument (relativeToURL) is accessed as a keyword argument. This
argument is declared as being of type NSURL *; since base is an instance
of NSURL, Rubicon can pass through this instance.

Sometimes, an Objective-C method definition will use the same keyword
argument name twice. This is legal in Objective-C, but not in Python, as you
can’t repeat a keyword argument in a method call. In this case, you can use a
“long form” of the method to explicitly invoke a descriptor by replacing
colons with underscores:

>>> base = NSURL.URLWithString_("http://pybee.org/")
>>> full = NSURL.URLWithString_relativeToURL_("contributing", base)

Instance methods

So far, we’ve been using the +URLWithString: static constructor. However, NSURL
also provides an initializer method -initWithString:. To use this method, you
first have to instruct the Objective-C runtime to allocate memory for the instance,
then invoke the initializer:

>>> base = NSURL.alloc().initWithString("http://pybee.org/")

Now that you have an instance of NSURL, you’ll want to manipulate it.
NSURL describes an absoluteURL property; this property can be
accessed as a Python attribute:

>>> absolute = full.absoluteURL

You can also invoke methods on the instance:

>>> longer = absolute.URLByAppendingPathComponent('how/first-time/')

If you want to output an object at the console, you can use the Objective-C
property description, or for debugging output, debugDescription:

>>> longer.description
'http://pybee.org/contributing/how/first-time/'

>>> longer.debugDescription
'http://pybee.org/contributing/how/first-time/>'

Internally, description and debugDescription are hooked up to their Python
equivalents, __str__() and __repr__(), respectively:

>>> str(absolute)
'http://pybee.org/contributing/how/first-time/'

>>> repr(absolute)
'<rubicon.objc.runtime.ObjCInstance 0x1114a3cf8: NSURL at 0x7fb2abdd0b20: http://pybee.org/contributing/>'

>>> print(absolute)
<rubicon.objc.runtime.ObjCInstance 0x1114a3cf8: NSURL at 0x7fb2abdd0b20: http://pybee.org/contributing/>

Time to take over the world!

You now have access to any method, on any class, in any library, in the
entire macOS or iOS ecosystem! If you can invoke something in Objective-C, you
can invoke it in Python - all you need to do is:

	load the library with ctypes;

	register the classes you want to use; and

	Use those classes as if they were written in Python.

Next steps

The next step is to write your own classes, and expose them into the
Objective-C runtime. That’s the subject of the next tutorial.

Tutorial 2 - Writing your own class

Eventually, you’ll come across an Objective-C API that requires you to provide
a class instance as an argument. For example, when using macOS and iOS GUI classes,
you often need to define “delegate” classes to describe how a GUI element will
respond to mouse clicks and key presses.

Let’s define a Handler class, with two methods:

	an -initWithValue: constructor that accepts an integer; and

	a -pokeWithValue:andName: method that accepts an integer and a string,
prints the string, and returns a float that is one half of the value.

The declaration for this class would be:

from rubicon.objc import NSObject, objc_method

class Handler(NSObject):
 @objc_method
 def initWithValue_(self, v: int):
 self.value = v
 return self

 @objc_method
 def pokeWithValue_andName_(self, v: int, name) -> float:
 print("My name is", name)
 return v / 2.0

This code has several interesting implementation details:

	The Handler class extends NSObject. This instructs Rubicon to
construct the class in a way that it can be registered with the
Objective-C runtime.

	Each method that we want to expose to Objective-C is decorated with
@objc_method.The method names match the Objective-C descriptor that
you want to expose, but with colons replaced by underscores. This matches
the “long form” way of invoking methods discussed in Your first bridge.

	The v argument on initWithValue_() uses a Python 3 type annotation
to declare it’s type. Objective-C is a language with static typing, so
any methods defined in Python must provide this typing information.
Any argument that isn’t annotated is assumed to be of type id - that is,
a pointer to an Objective-C object.

	The pokeWithValue_andName_() method has it’s integer argument
annotated, and has it’s return type annotated as float. Again, this is
to support Objective-C typing operations. Any function that has no
return type annotation is assumed to return id. A return type
annotation of None will be interpreted as a void method in
Objective-C. The name argument doesn’t need to be annotated because it
will be passed in as a string, and strings are NSObject subclasses
in Objective-C.

	initWithValue_() is a constructor, so it returns self.

Having declared the class, you can then instantiate and use it:

>>> my_handler = Handler.alloc().initWithValue(42)
>>> print(my_handler.value)
42
>>> print(my_handler.pokeWithValue(37, andName="Alice"))
My name is Alice
18.5

Objective-C properties

When we defined the initializer for Handler, we stored the provided value
as the value attribute of the class. However, as this attribute wasn’t
declared to Objective-C, it won’t be visible to the Objective-C runtime.
You can access value from within Python - but Objective-C code won’t be able
to access it.

To expose value to the Objective-C runtime, we need to make one small change,
and explicitly declare value as an Objective-C property:

from rubicon.objc import NSObject, objc_method

class PureHandler(NSObject):
 value = obj_property()

 @objc_method
 def initWithValue_(self, v: int):
 self.value = v
 return self

This doesn’t change anything about how you access or modify the attribute - it
just means that Objective-C code will be able to see the attribute as well.

Class naming

In this revised example, you’ll note that we also used a different class name
- PureHandler. This was deliberate, because Objective-C doesn’t have any
concept of namespaces. As a result, you can only define one class of any given
name in a process - so, you wont be able to define a second Handler class in
the same Python shell. If you try, you’ll get an error:

>>> class Handler(NSObject):
... pass
Traceback (most recent call last)
...
RuntimeError: ObjC runtime already contains a registered class named 'Handler'.

You’ll need to be careful (and sometimes, painfully verbose) when choosing class
names.

What, no __init__()?

You’ll also notice that our example code doesn’t have an __init__() method
like you’d normally expect of Python code. As we’re defining an Objective-C
class, we need to follow the Objective-C object lifecycle - which means
defining initializer methods that are visible to the Objective-C runtime, and
invoking them over that bridge.

Next steps

???

How-to Guides

How-to guides are recipes that take the user through steps in key subjects. They are more advanced than tutorials and assume a lot more about what the user already knows than tutorials do, and unlike documents in the tutorial they can stand alone.

	Get started

	Mapping Python types to Objective-C

	Using and creating Objective-C protocols

	Using AsyncIO in your app

	Contribute to Toga

How to get started

To use Rubicon, create a new virtual environment, and install it:

$ python3 -m venv venv
$ source venv/bin/activate.sh
(venv) $ pip install rubicon-objc

You’re now ready to use Rubicon! Your next step is to work through the
Tutorials, which will take you step-by-step through your first steps
and introduce you to the important concepts you need to become familiar
with.

You’re just not my type: Using Objective-C types in Python

Objective-C is a strong, static typed language. Every variable has a specific type, and that type cannot change over time. If a function declares that it accepts an integer, then it must receive a variable that is declared as an integer, or an expression that results in an integer.

Python, on the other hand, is strong, but dynamically typed language. Every variable has a specific type, but that type can be modified or interpreted in other ways. When a function accepts an argument, Python will allow you to pass any variable, of any type.

So, if you want to bridge between Objective-C and Python, you need to be able to provide static typing information so that Python can work out how to convert a variable of arbitrary type into a specific type matching Objective-C’s expectations.

If you’re calling an Objective C method defined in a library, this conversion is done automatically - the Objective-C runtime contains enough information for Rubicon to infer the required types. However, if you’re defining a new method (or a method override) in Python, we need to provide that typing information. To do this, we use Python 3’s type annotation. Here’s how.

Primitives

If a Python value needs to be passed in as a primitive, Rubicon will wrap the primitive:

bool 8 bit integer (although it can only hold 2 values - 0 and 1)
int 32 bit integer
float double precision floating point
===== ==

If a Python value needs to be passed in as an object, Rubicon will wrap the primitive in an object:

	Value

	Objective C type

	bool

	NSNumber (bool)

	int

	NSNumber (long)

	float

	NSNumber (double)

If you’re declaring a method and need to annotate the type of an argument, the Python type name can be used as the annotation type. You can also use any of the ctypes primitive types. Rubicon also provides type
definitions for common Objective-C typedefs, like NSInteger, CGFloat, and so on.

Lists

If a method calls for an NSArray or NSMutableArray argument, you can provide a Python list for that argument. Rubicon will construct an NSMutableArray instance from the data in the list provided, and pass that value for the argument.

If a method returns an NSArray or NSMutableArray, the return value will be a wrapped ObjCListInstance type. This type implements a list-like interface, wrapped around the underlying NSArray data. This means you can treat the return value as if it were a list - iterating over values, retrieving objects by index, and so on.

Dictionaries

If a method calls for an NSDictionary or NSMutableDictionary argument, you can provide a Python dict. Rubicon will construct an NSMutableDictionary instance from the data in the list provided, and pass that value for the argument.

If a method returns an NSDictionary or NSMutableDictionary, the return value will be a wrapped ObjCDictInstance type. This type implements a dict-like interface, wrapped around the underlying NSDictionary data. This means you can treat the return value as if it were a dict - iterating over keys, values or items, retrieving objects by key, and so on.

NSPoint, NSSize, and NSRect

Using and creating Objective-C protocols

Protocols are used in Objective-C to declare a set of methods and properties for a class to implement. They have a similar purpose to ABCs (abstract base classes) in Python.

Looking up a protocol

Protocol objects can be looked up using the ObjCProtocol constructor, similar to how classes can be looked up using ObjCClass:

>>> NSCopying = ObjCProtocol('NSCopying')
>>> NSCopying
<rubicon.objc.runtime.ObjCProtocol: NSCopying at 0x7fff76543210>

The isinstance function can be used to check whether an object conforms to a protocol:

>>> isinstance(NSObject.new(), NSCopying)
False
>>> isinstance(NSArray.array(), NSCopying)
True

Implementing a protocol

When writing a custom Objective-C class, you might want to have it conform to one or multiple protocols. In Rubicon, this is done by using the protocols keyword argument in the base class list. For example, if you have a class UserAccount and want it to conform to NSCopyable, you would write it like this:

class UserAccount(NSObject, protocols=[NSCopying]):
 username = objc_property()
 emailAddress = objc_property()

 @objc_method
 def initWithUsername_emailAddress_(self, username, emailAddress):
 self = self.init()
 if self is None:
 return None
 self.username = username
 self.emailAddress = emailAddress
 return self

 # This method is required by NSCopying.
 # The "zone" parameter is obsolete and can be ignored, but must be included for backwards compatibility.
 # This method is not normally used directly. Usually you call the copy method instead,
 # which calls copyWithZone: internally.
 @objc_method
 def copyWithZone_(self, zone):
 return UserAccount.alloc().initWithUsername(self.username, emailAddress=self.emailAddress)

We can now use our class. The copy method (which uses our implemented copyWithZone: method) can also be used:

>>> ua = UserAccount.alloc().initWithUsername_emailAddress_(at('person'), at('person@example.com'))
>>> ua
<rubicon.objc.runtime.ObjCInstance 0x106543210: UserAccount at 0x106543220: <UserAccount: 0x106543220>>
>>> ua.copy()
<rubicon.objc.runtime.ObjCInstance 0x106543210: UserAccount at 0x106543220: <UserAccount: 0x106543220>>

And we can check that the class conforms to the protocol:

>>> isinstance(ua, NSCopying)
True

Writing custom protocols

You can also create custom protocols. This works similarly to creating custom Objective-C classes:

class Named(metaclass=ObjCProtocol):
 name = objc_property()

 @objc_method
 def sayName(self):
 ...

There are two notable differences between creating classes and protocols:

	Protocols do not need to extend exactly one other protocol - they can also extend multiple protocols, or none at all. When not extending other protocols, as is the case here, we need to explicitly add metaclass=ObjCProtocol to the base class list, to tell Python that this is a protocol and not a regular Python class. When extending other protocols, Python detects this automatically.

	Protocol methods do not have a body. Python has no dedicated syntax for functions without a body, so we put ... in the body instead. (You could technically put code in the body, but this would be misleading and is not recommended.)

Asynchronous Programming with Rubicon

One of the banner features of Python 3 is the introduction of native
asychronous programming, implemented in the asyncio.

For an introduction to the use of asynchronous programming, see the
documentation for the asyncio module
<https://docs.python.org/3/library/asyncio.html>, or this introductory
tutorial to asynchronous programming with asyncio
<http://asyncio.readthedocs.io/en/latest/index.html>.

Integrating asyncio with CoreFoundation

The asyncio module provides an event loop to coordinate asynchronous features.
However, if you’re running an Objective C GUI applicaiton, you probably
already have an event loop - the one provided by CoreFoundation. This
CoreFoundation event loop is then wrapped by NSApplication or
UIApplication in end-user code.

However, you can’t have two event loops running at the same time, so you need
a way to integrate the two. Luckily, asyncio provides a way to customize
it’s event loop so it can be integrated with other event sources.

It does this using an Event Loop Policy. Rubicon provides an Core Foundation
Event Loop Policy that inserts Core Foundation event handling into the asyncio
event loop.

To use asyncio in a pure Core Foundation application, do the following:

Import the Event Loop Policy
from rubicon.objc.async import EventLoopPolicy

Install the event loop policy
asyncio.set_event_loop_policy(EventLoopPolicy())

Get an event loop, and run it!
loop = asyncio.get_event_loop()
loop.run_forever()

The last call (loop.run_forever()) will, as the name suggests, run forever
- or, at least, until an event handler calls loop.stop() to terminate the
event loop.

Integrating asyncio with AppKit and NSApplication

If you’re using AppKit and NSApplication, you don’t just need to start the
CoreFoundation event loop - you need to start the full NSApplication
lifecycle. To do this, you pass the application instance into the call to
loop.run_forever():

Import the Event Loop Policy and lifecycle
from rubicon.objc.async import EventLoopPolicy, CocoaLifecycle

Install the event loop policy
asyncio.set_event_loop_policy(EventLoopPolicy())

Get a handle to the shared NSApplication
from ctypes import cdll, util
from rubicon.objc import ObjCClass

appkit = cdll.LoadLibrary(util.find_library('AppKit'))
NSApplication = ObjCClass('NSApplication')
app = NSApplication.sharedApplication()

Get an event loop, and run it, using the NSApplication!
loop = asyncio.get_event_loop()
loop.run_forever(lifecycle=CocoaLifecycle(app))

Again, this will run “forever” – until either loop.stop() is called, or
terminate: is invoked on the NSApplication.

How to contribute to Rubicon

If you experience problems with Rubicon, log them on GitHub [https://github.com/pybee/rubicon-objc/issues]. If you want
to contribute code, please fork the code [https://github.com/pybee/rubicon-objc] and submit a pull request [https://github.com/pybee/rubicon-objc/pulls].

Set up your development environment

The recommended way of setting up your development environment for Rubicon
is to install a virtual environment, install the required dependencies and
start coding:

$ python3 -m venv venv
$ source venv/bin/activate.sh
$ git clone git@github.com:pybee/rubicon-objc.git
$ cd rubicon-objc
$ pip install -e .

In order to test the capabilities of Rubicon, the test suite contains
an Objective-C library with some known classes. To run the test suite,
you’ll need to compile this library:

$ make

This will produce tests/objc/librubiconharness.dylib.

In order for Rubicon to find this file, it will need to be on your
dynamic library path. You can set this by setting an environment
variable:

$ export DYLD_LIBRARY_PATH=$(pwd)/tests/objc

You can then run the test suite:

$ python setup.py test

Now you are ready to start hacking on Rubicon. Have fun!

Background

Want to know more about the Rubicon project, it’s history, community, and
plans for the future? That’s what you’ll find here!

	Why “Rubicon”?

	The Rubicon Objective-C Developer and User community

	Release History

	Rubicon Roadmap

Why “Rubicon”?

So… why the name Rubicon?

The Rubicon is a river in Italy. It was of importance in ancient times as the
border of Rome. The Roman Army was prohibited from crossing this border, as that
would be considered a hostile act against the Roman Senate.

In 54 BC, Julius Caesar marched the Roman Army across the Rubicon, signaling
his intention to overthrow the Roman Senate. As he did so, legend says he
uttered the words “Alea Iacta Est” - The die is cast. This action led to Julius
being crowned as Emperor of Rome, and the start of the Roman Empire.

Of course, in order to cross any river, you need to use a bridge.

This project provides a bridge between the open world of the Python
ecosystem, and the walled garden of Apple’s Objective-C ecosystem.

The Rubicon Objective-C Developer and User community

Rubicon Objective-C is part of the BeeWare suite [http://pybee.org]. You can talk to the
community through:

	@pybeeware on Twitter [https://twitter.com/pybeeware]

	The pybee/general [https://gitter.im/pybee/general] channel on Gitter.

Code of Conduct

The BeeWare community has a strict Code of Conduct [http://pybee.org/contributing/index.html]. All users and
developers are expected to adhere to this code.

If you have any concerns about this code of conduct, or you wish to report a
violation of this code, please contact the project founder Russell Keith-
Magee.

Contributing

If you experience problems with Rubicon, log them on GitHub [https://github.com/pybee/rubicon-objc/issues]. If you
want to contribute code, please fork the code [https://github.com/pybee/rubicon-objc] and submit a pull request [https://github.com/pybee/rubicon-objc/pulls].

Release History

(next version)

	Improved handling of boolean types.

	Added support for using primitives as object values (e.g, as the key/value in an NSDictonary).

	Added support for passing Python lists as Objective-C NSArray arguments, and Python dicts as Objective-C NSDictionary arguments.

	Corrected support to storing strings and other objects as properties on Python-defined Objective-C classes.

	Added support for creating Objective-C blocks from Python callables. (ojii)

	Added support for creating, extending and conforming to Objective-C protocols.

	Added an objc_const convenience function to look up global Objective-C object constants in a DLL.

	Added support for registering custom ObjCInstance subclasses to be used to represent Objective-C objects of specific classes.

0.2.8

	Added support for using native Python sequence/mapping syntax with NSArray and NSDictionary. (jeamland)

	Added support for calling Objective-C blocks in Python. (ojii)

	Added functions for declaring custom conversions between Objective-C type encodings and ctypes types.

	Added functions for splitting and decoding Objective-C method signature encodings.

	Added automatic conversion of Python sequences to C arrays or structures in method arguments.

	Extended the Objective-C type encoding decoder to support block types, bit fields (in structures), typed object pointers, and arbitrary qualifiers. If unknown pointer, array, struct or union types are encountered, they are created and registered on the fly.

	Changed the PyObjectEncoding to match the real definition of PyObject *.

	Fixed the declaration of unichar (was previously c_wchar, is now c_ushort).

	Removed the get_selector function. Use the SEL constructor instead.

	Removed some runtime function declarations that are deprecated or unlikely to be useful.

	Removed the encoding constants. Use encoding_for_ctype to get the encoding of a type.

0.2.7

	(#40) Added the ability to explicitly declare no-attribute methods as
properties. This is to enable a workaround when Apple introduces readonly
properties as a way to access these methods.

0.2.6

	Added a more compact syntax for calling Objective-C methods, using Python
keyword arguments. (The old syntax is still fully supported and will not
be removed; certain method names even require the old syntax.)

	Added a superclass property to ObjCClass.

0.2.5

	Added official support for Python 3.6.

	Added keyword arguments to disable argument and/or return value conversion
when calling an Objective-C method.

	Added support for (NS/UI) EdgeInsets structs. (Longhanks)

	Improved str of Objective-C classes and objects to return the
debugDescription, or for NSStrings, the string value.

	Changed ObjCClass to extend ObjCInstance (in addition to type),
and added an ObjCMetaClass class to represent metaclasses.

	Fixed some issues on non-x86_64 architectures (i386, ARM32, ARM64).

	Fixed example code in README. (Dayof)

	Removed the last of the Python 2 compatibility code.

0.2.4

	Added objc_property function for adding properties to custom Objective-C
subclasses. (Longhanks)

0.2.3

	Removed most Python 2 compatibility code.

0.2.2

	Dropped support for Python 3.3.

	Added conversion of Python enum.Enum objects to their underlying values
when passed to an Objective-C method.

	Added syntax highlighting to example code in README. (stsievert)

	Fixed the setup.py shebang line. (uranusjr)

0.2.1

	Fixed setting of ObjCClass/ObjCInstance attributes that are not
Objective-C properties.

0.2.0

	First beta release.

	Dropped support for Python 2. Python 3 is now required, the minimum tested
version is Python 3.3.

	Added error detection when attempting to create an Objective-C class with a
name that is already in use.

	Added automatic conversion between Python decimal.Decimal and
Objective-C NSDecimal in method arguments and return values.

	Added PyPy to the list of test platforms.

	When subclassing Objective-C classes, the return and argument types of
methods are now specified using Python type annotation syntax and ctypes
types.

	Improved property support.

0.1.3

	Fixed some issues on ARM64 (iOS 64-bit).

0.1.2

	Fixed NSString conversion in a few situations.

	Fixed some issues on iOS and 32-bit platforms.

0.1.1

	Objective-C classes can now be subclassed using Python class syntax, by
using an ObjCClass as the superclass.

	Removed ObjCSubclass, which is made obsolete by the new subclassing
syntax.

0.1.0

	Initial alpha release.

	Objective-C classes and instances can be accessed via ObjCClass and
ObjCInstance.

	Methods can be called on classes and instances with Python method call
syntax.

	Properties can be read and written with Python attribute syntax.

	Method return and argument types are read automatically from the method
type encoding.

	A small number of commonly used structs are supported as return and
argument types.

	Python strings are automatically converted to and from NSString when
passed to or returned from a method.

	Subclasses of Objective-C classes can be created with ObjCSubclass.

Rubicon Roadmap

Reference

This is the technical reference for public APIs provided by Briefcase.

Index

 _static/rubicon.png

_static/minus.png

_static/plus.png

_static/images/rubicon.png

nav.xhtml

 Table of Contents

 		
 Rubicon Objective-C

_static/file.png

