
Rubicon Documentation
Release 0.4.9

Russell Keith-Magee

May 03, 2024

CONTENTS

1 Table of contents 3
1.1 Tutorial . 3
1.2 How-to guides . 3
1.3 Background . 3
1.4 Reference . 3

2 Community 5
2.1 Tutorials . 5
2.2 How-to Guides . 10
2.3 Background . 34
2.4 Reference . 47

Python Module Index 77

Index 79

i

ii

Rubicon Documentation, Release 0.4.9

Rubicon Objective-C is a bridge between Objective-C and Python. It enables you to:

• Use Python to instantiate objects defined in Objective-C,

• Use Python to invoke methods on objects defined in Objective-C, and

• Subclass and extend Objective-C classes in Python.

It also includes wrappers of the some key data types from the Foundation framework (e.g., NSString).

CONTENTS 1

Rubicon Documentation, Release 0.4.9

2 CONTENTS

CHAPTER

ONE

TABLE OF CONTENTS

1.1 Tutorial

Get started with a hands-on introduction for beginners

1.2 How-to guides

Guides and recipes for common problems and tasks, including how to contribute

1.3 Background

Explanation and discussion of key topics and concepts

1.4 Reference

Technical reference - commands, modules, classes, methods

3

Rubicon Documentation, Release 0.4.9

4 Chapter 1. Table of contents

CHAPTER

TWO

COMMUNITY

Rubicon is part of the BeeWare suite. You can talk to the community through:

• @beeware@fosstodon.org on Mastodon

• Discord

• The Rubicon-ObjC Github Discussions forum

2.1 Tutorials

These tutorials are step-by step guides for using Rubicon.

2.1.1 Your first bridge

In this example, we’re going to use Rubicon to access the Objective-C Foundation library, and the NSURL class in that
library. NSURL is the class used to represent and manipulate URLs.

This tutorial assumes you’ve set up your environment as described in the Getting started guide.

Accessing NSURL

Start Python, and get a reference to an Objective-C class. In this example, we’re going to use the NSURL class, Objective-
C’s representation of URLs:

>>> from rubicon.objc import ObjCClass
>>> NSURL = ObjCClass("NSURL")

This gives us an NSURL class in Python which is transparently bridged to the NSURL class in the Objective-C runtime.
Any method or property described in Apple’s documentation on NSURL can be accessed over this bridge.

Let’s create an instance of an NSURL object. The NSURL documentation describes a static constructor
+URLWithString:; we can invoke this constructor as:

>>> base = NSURL.URLWithString("https://beeware.org/")

That is, the name of the method in Python is identical to the method in Objective-C. The first argument is declared as
being an NSString *; Rubicon converts the Python str into an NSString instance as part of invoking the method.

NSURL has another static constructor: +URLWithString:relativeToURL:. We can also invoke this constructor:

5

https://beeware.org
https://fosstodon.org/@beeware
https://beeware.org/bee/chat/
https://github.com/beeware/rubicon-objc/discussions
https://developer.apple.com/documentation/foundation/nsurl?language=objc
https://docs.python.org/3/library/stdtypes.html#str

Rubicon Documentation, Release 0.4.9

>>> full = NSURL.URLWithString("contributing/", relativeToURL=base)

The second argument (relativeToURL) is accessed as a keyword argument. This argument is declared as being of
type NSURL *; since base is an instance of NSURL, Rubicon can pass through this instance.

Sometimes, an Objective-C method definition will use the same keyword argument name twice (for example,
NSLayoutConstraint has a +constraintWithItem:attribute:relatedBy:toItem:attribute:multiplier:constant:
selector, using the attribute keyword twice). This is legal in Objective-C, but not in Python, as you can’t repeat a
keyword argument in a method call. In this case, you can use a __ suffix on the ambiguous keyword argument to make
it unique. Any content after and including the __ will be stripped when making the Objective-C call:

>>> constraint = NSLayoutConstraint.constraintWithItem(
... first_item,
... attribute__1=first_attribute,
... relatedBy=relation,
... toItem=second_item,
... attribute__2=second_attribute,
... multiplier=2.0,
... constant=1.0
...)

Instance methods

So far, we’ve been using the +URLWithString: static constructor. However, NSURL also provides an initializer method
-initWithString:. To use this method, you first have to instruct the Objective-C runtime to allocate memory for the
instance, then invoke the initializer:

>>> base = NSURL.alloc().initWithString("https://beeware.org/")

Now that you have an instance of NSURL, you’ll want to manipulate it. NSURL describes an absoluteURL property;
this property can be accessed as a Python attribute:

>>> absolute = full.absoluteURL

You can also invoke methods on the instance:

>>> longer = absolute.URLByAppendingPathComponent('how/first-time/')

If you want to output an object at the console, you can use the Objective-C property description, or for debugging
output, debugDescription:

>>> longer.description
'https://beeware.org/contributing/how/first-time/'

>>> longer.debugDescription
'https://beeware.org/contributing/how/first-time/'

Internally, description and debugDescription are hooked up to their Python equivalents, __str__() and
__repr__(), respectively:

>>> str(absolute)
'https://beeware.org/contributing/'

(continues on next page)

6 Chapter 2. Community

Rubicon Documentation, Release 0.4.9

(continued from previous page)

>>> repr(absolute)
'<ObjCInstance: NSURL at 0x1114a3cf8: https://beeware.org/contributing/>'

>>> print(absolute)
https://beeware.org/contributing/

Time to take over the world!

You now have access to any method, on any class, in any library, in the entire macOS or iOS ecosystem! If you can
invoke something in Objective-C, you can invoke it in Python - all you need to do is:

• load the library with ctypes;

• register the classes you want to use; and

• Use those classes as if they were written in Python.

Next steps

The next step is to write your own classes, and expose them into the Objective-C runtime. That’s the subject of the next
tutorial.

2.1.2 Tutorial 2 - Writing your own class

Eventually, you’ll come across an Objective-C API that requires you to provide a class instance as an argument. For
example, when using macOS and iOS GUI classes, you often need to define “delegate” classes to describe how a GUI
element will respond to mouse clicks and key presses.

Let’s define a Handler class, with two methods:

• an -initWithValue: constructor that accepts an integer; and

• a -pokeWithValue:andName: method that accepts an integer and a string, prints the string, and returns a float
that is one half of the value.

The declaration for this class would be:

from rubicon.objc import NSObject, objc_method

class Handler(NSObject):
@objc_method
def initWithValue_(self, v: int):

self.value = v
return self

@objc_method
def pokeWithValue_andName_(self, v: int, name) -> float:

print("My name is", name)
return v / 2.0

This code has several interesting implementation details:

2.1. Tutorials 7

Rubicon Documentation, Release 0.4.9

• The Handler class extends NSObject. This instructs Rubicon to construct the class in a way that it can be
registered with the Objective-C runtime.

• Each method that we want to expose to Objective-C is decorated with @objc_method.The method names match
the Objective-C descriptor that you want to expose, but with colons replaced by underscores. This matches the
“long form” way of invoking methods discussed in Your first bridge.

• The v argument on initWithValue_() uses a Python 3 type annotation to declare it’s type. Objective-C is
a language with static typing, so any methods defined in Python must provide this typing information. Any
argument that isn’t annotated is assumed to be of type id - that is, a pointer to an Objective-C object.

• The pokeWithValue_andName_() method has it’s integer argument annotated, and has it’s return type anno-
tated as float. Again, this is to support Objective-C typing operations. Any function that has no return type
annotation is assumed to return id. A return type annotation of None will be interpreted as a void method in
Objective-C. The name argument doesn’t need to be annotated because it will be passed in as a string, and strings
are NSObject subclasses in Objective-C.

• initWithValue_() is a constructor, so it returns self.

Having declared the class, you can then instantiate and use it:

>>> my_handler = Handler.alloc().initWithValue(42)
>>> print(my_handler.value)
42
>>> print(my_handler.pokeWithValue(37, andName="Alice"))
My name is Alice
18.5

Objective-C properties

When we defined the initializer for Handler, we stored the provided value as the value attribute of the class. However,
as this attribute wasn’t declared to Objective-C, it won’t be visible to the Objective-C runtime. You can access value
from within Python - but Objective-C code won’t be able to access it.

To expose value to the Objective-C runtime, we need to make one small change, and explicitly declare value as an
Objective-C property:

from rubicon.objc import NSObject, objc_method, objc_property()

class PureHandler(NSObject):
value = objc_property()

@objc_method
def initWithValue_(self, v: int):

self.value = v
return self

This doesn’t change anything about how you access or modify the attribute - it just means that Objective-C code will
be able to see the attribute as well.

8 Chapter 2. Community

Rubicon Documentation, Release 0.4.9

Class naming

In this revised example, you’ll note that we also used a different class name - PureHandler. This was deliberate,
because Objective-C doesn’t have any concept of namespaces. As a result, you can only define one class of any given
name in a process - so, you won’t be able to define a second Handler class in the same Python shell. If you try, you’ll
get an error:

>>> class Handler(NSObject):
... pass
Traceback (most recent call last)
...
RuntimeError: An Objective-C class named b'Handler' already exists

You’ll need to be careful (and sometimes, painfully verbose) when choosing class names.

To allow a class name to be re-used, you can set the class variable auto_rename to True. This option enables automatic
renaming of the Objective C class if a naming collision is detected:

>>> ObjCClass.auto_rename = True

This option can also be enabled on a per-class basis by using the auto_rename argument in the class declaration:

>>> class Handler(NSObject, auto_rename=True):
... pass

If this option is used, the Objective C class name will have a numeric suffix (e.g., Handler_2). The Python class name
will be unchanged.

What, no __init__()?

You’ll also notice that our example code doesn’t have an __init__() method like you’d normally expect of Python
code. As we’re defining an Objective-C class, we need to follow the Objective-C object life cycle - which means
defining initializer methods that are visible to the Objective-C runtime, and invoking them over that bridge.

Next steps

???

2.1.3 Tutorial 1 - Your first bridge

In Your first bridge, you will use Rubicon to invoke an existing Objective-C library on your computer.

2.1.4 Tutorial 2 - Writing your own class

In Tutorial 2 - Writing your own class, you will write a Python class, and expose it to the Objective-C runtime.

2.1. Tutorials 9

Rubicon Documentation, Release 0.4.9

2.2 How-to Guides

How-to guides are recipes that take the user through steps in key subjects. They are more advanced than tutorials and
assume a lot more about what the user already knows than tutorials do, and unlike documents in the tutorial they can
stand alone.

2.2.1 Getting Started with Rubicon

To use Rubicon, create a new virtual environment, and install it:

$ python3 -m venv venv
$ source venv/bin/activate
(venv) $ pip install rubicon-objc

You’re now ready to use Rubicon! Your next step is to work through the Tutorials, which will take you step-by-step
through your first steps and introduce you to the important concepts you need to become familiar with.

2.2.2 You’re just not my type: Using Objective-C types in Python

Objective-C is a strongly and statically-typed language. Every variable has a specific type, and that type cannot change
over time. Function parameters also have fixed types, and a function will only accept arguments of the correct types.

Python, on the other hand, is a strongly, but dynamically-typed language. Every object has a specific type, but all
variables can hold objects of any type. When a function accepts an argument, Python will allow you to pass any object,
of any type.

So, if you want to bridge between Objective-C and Python, you need to be able to provide static typing information so
that Rubicon can work out how to convert a Python object of arbitrary type into a specific type matching Objective-C’s
expectations.

Type annotations

If you’re calling an Objective-C method defined in a library, its types are already known to the Objective-C runtime and
Rubicon. However, if you’re defining a new method (or a method override) in Python, you need to manually provide
its types. This is done using Python 3’s type annotation syntax.

Passing and returning Objective-C objects doesn’t require any extra work — if you don’t annotate a parameter or the
return type, Rubicon assumes that it is an Objective-C object. (To define a method that doesn’t return anything, you
need to add an explicit -> None annotation.)

All other parameter and return types (primitives, pointers, structs) need to be annotated to tell Rubicon and Objective-C
which type to expect. These annotations can use any of the types defined by Rubicon, such as NSInteger or NSRange,
as well as standard C types from the ctypes module, such as c_byte or c_double.

For example, a method that takes a C double and returns a NSInteger would be defined and annotated like this:

@objc_method
def roundToZero_(self, value: c_double) -> NSInteger:

return int(value)

Rubicon also allows certain Python types to be used in method signatures, and converts them to matching primitive
ctypes types. For example, Python int is treated as c_int, and float is treated as c_double.

10 Chapter 2. Community

https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/ctypes.html#ctypes.c_byte
https://docs.python.org/3/library/ctypes.html#ctypes.c_double
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/ctypes.html#ctypes.c_double

Rubicon Documentation, Release 0.4.9

See also:

The rubicon.objc.types reference documentation lists all C type definitions provided by Rubicon, and provides
additional information about how Rubicon converts types.

Type conversions

When you call existing Objective-C methods, Rubicon already knows which type each argument needs to have and
what it returns. Based on this type information, Rubicon will automatically convert the passed arguments to the proper
Objective-C types, and the return value to an appropriate Python type. This makes explicit type conversions between
Python and Objective-C types unnecessary in many cases.

Argument conversion

If an Objective-C method expects a C primitive argument, you can pass an equivalent Python value instead. For
example, a Python int value can be passed into any integer argument (int, NSInteger, uint8_t, . . .), and a Python
float value can be passed into any floating-point argument (double, CGFloat, . . .).

To pass a C structure as an argument, you would normally need to construct a structure instance by name. This can get
somewhat lengthy, especially with nested structures (e. g. NSRect(NSPoint(1.2, 3.4), NSSize(5.6, 7.8))).
As a shorthand, Rubicon allows passing tuples instead of structure objects (e. g. ((1.2, 3.4), (5.6, 7.8))) and
automatically converts them to the required structure type.

If a parameter expects an Objective-C object, you can also pass certain Python objects, which are automatically con-
verted to their Objective-C counterparts. For example, a Python str is converted to an NSString, bytes to NSData,
etc. Collections are also supported: list and dict are converted to NSArray and NSDictionary, and their elements
are converted recursively.

Note: All of these conversions can also be performed manually - see Manual conversions for details.

Return value conversion and wrapping

Primitive values returned from methods are converted using the usual ctypes conversions, e. g. C integers are con-
verted to Python int and floating-point values to Python float.

Objective-C objects are automatically returned as ObjCInstance objects, so you can call methods on them and access
their properties. In some cases, Rubicon also provides additional Python methods on Objective-C objects - see Python-
style APIs and methods for Objective-C objects for details.

Invoking Objective-C methods

Once an Objective-C class has been wrapped, the selectors on that class (or instances of that class) can be invoked
as if they were methods on the Python class. Each Objective-C selector is converted into a Python method name by
replacing the colons in the selector with underscores.

For example, the Objective-C class NSURL has defines a instance selector of -initWithString:relativeToURL:;
this will be converted into the Python method initWithString_relativeToURL_(). Arguments to this method are
all positional, and passed in the order they are defined in the selector. Selectors without arguments (such as +alloc or
-init) are defined as methods with no arguments, and no underscores in the name:

2.2. How-to Guides 11

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

Rubicon Documentation, Release 0.4.9

Wrap the NSURL class
NSURL = ObjCClass("NSURL")
Invoke the +alloc selector
my_url = NSURL.alloc()
Invoke -initWithString:relativeToURL:
my_url.initWithString_relativeToURL_("something/", "https://example.com/")

This can result in very long method names; so Rubicon also provides an alternate mapping for methods, using Python
keyword arguments. In this approach, the first argument is handled as a positional argument, and all subsequent argu-
ments are handled as keyword arguments, with the underscore suffixes being omitted. The last method in the previous
example could also be invoked as:

Invoke -initWithString:relativeToURL:
my_url.initWithString("something/", relativeToURL="https://example.com/")

Keyword arguments must be passed in the order they are defined in the selector. For example, if you were invoking
-initFileURLWithPath:isDirectory:relativeToURL, it must be invoked as:

Invoke -initFileURLWithPath:isDirectory:relativeToURL
my_url.initFileURLWithPath(

"something/",
isDirectory=True,
relativeToURL="file:///Users/brutus/"

)

Even though from a strict Python perspective, passing relativeToURL before isDirectory would be syntactically
equivalent, this will not match the corresponding Objective-C selector.

This “interleaved” keyword syntax works for most Objective-C selectors without any problem. However,
Objective-C allows arguments in a selector to be repeated. For example, NSLayoutConstraint defines a
+constraintWithItem:attribute:relatedBy:toItem:attribute:multiplier:constant: selector, dupli-
cating the attribute keyword. Python will not allow a keyword argument to be duplicated, so to reach selectors of
this type, Rubicon allows any keyword argument to be appended with a __ suffix to generate a name that is unique in
the Python code:

Invoke +constraintWithItem:attribute:relatedBy:toItem:attribute:multiplier:constant:
NSLayoutConstraint.constraintWithItem(

first_item,
attribute__1=first_attribute,
relatedBy=relation,
toItem=second_item,
attribute__2=second_attribute,
multiplier=2.0,
constant=1.0

)

The name used after the __ has no significance - it is only used to ensure that the Python keyword is unique, and is
immediately stripped and ignored. By convention, we recommend using integers as we’ve done in this example; but
you can use any unique text you want. For example, attribute__from and attribute__to would also work in this
situation, as would attribute and atribute__to (as the names are unique in the Python namespace).

12 Chapter 2. Community

Rubicon Documentation, Release 0.4.9

Python-style APIs and methods for Objective-C objects

For some standard Foundation classes, such as lists and dictionaries, Rubicon provides additional Python methods to
make them behave more like their Python counterparts. This allows using Foundation objects in place of regular Python
objects, so that you do not need to convert them manually.

Strings

NSString objects behave almost exactly like Python str objects - they can be sliced, concatenated, compared, etc.
with other Objective-C and Python strings.

Call an Objective-C method that returns a string.
We're using NSBundle to give us a string version of a path
>>> NSBundle.mainBundle.bundlePath
<ObjCStrInstance: __NSCFString at 0x114a94d68: /Users/brutus/path/to/somewhere>

Slice the Objective-C string
>>> NSBundle.mainBundle.bundlePath[:14]
<ObjCStrInstance: __NSCFString at 0x114aa80f0: /Users/brutus/>

Note: ObjCInstance objects wrapping a NSString internally have the class ObjCStrInstance, and you will
see this name in the repr() of NSString objects. This is an implementation detail - you should not refer to the
ObjCStrInstance class explicitly in your code.

If you have an NSString, and you need to pass it to a method that does a specific type check for str, you can use
str(nsstring) to convert the NSString to str:

Convert the Objective-C string to a Python string.
>>> str(NSBundle.mainBundle.bundlePath)
'/Users/rkm/projects/beeware/venv3.6/bin'

Conversely, if you have a str, and you specifically require a NSString, you can use the at() function to convert the
Python instance to an NSString.

>>> from rubicon.objc import at
Create a Python string
>>> py_str = 'hello world'
Convert to an Objective-C string
>>> at(py_str)
<ObjCStrInstance: __NSCFString at 0x114a94e48: hello world>

NSString also supports all the utility methods that are available on str, such as replace and split. When these
methods return a string, the implementation may return Python str or Objective-C NSString instances. If you need
to use the return value from these methods, you should always use str or at() to ensure that you have the right kind
of string for your needs.

Is the path comprised of all lowercase letters? (Hint: it isn't)
>>> NSBundle.mainBundle.bundlePath.islower()
False

Convert string to lower case; use str() to ensure we get a Python string.
(continues on next page)

2.2. How-to Guides 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Rubicon Documentation, Release 0.4.9

(continued from previous page)

>>> str(NSBundle.mainBundle.bundlePath.lower())
'/users/rkm/projects/beeware/venv3.6/bin'

Note: NSString objects behave slightly differently than Python str objects in some cases. For technical reasons,
NSStrings are not hashable in Python, which means they cannot be used as dict keys (but they can be used as
NSDictionary keys). NSString also handles Unicode code points above U+FFFF differently than Python str, because
the former is based on UTF-16.

Lists

NSArray objects behave like any other Python sequence - they can be indexed, sliced, etc. and standard operations like
len() and in are supported:

>>> from rubicon.objc import NSArray
>>> array = NSArray.arrayWithArray(list(range(4)))
>>> array[0]
0
>>> array[1:3]
<ObjCListInstance: _NSArrayI at 0x10b855208: <__NSArrayI 0x7f86f8e61950>(
1,
2
)
>
>>> len(array)
4
>>> 2 in array
True
>>> 5 in array
False

Note: ObjCInstance objects wrapping a NSArray internally have the class ObjCListInstance or
ObjCMutableListInstance, and you will see these names in the repr() of NSArray objects. This is an imple-
mentation detail - you should not refer to the ObjCListInstance and ObjCMutableListInstance classes explicitly
in your code.

NSMutableArray objects additionally support mutating operations, like item and slice assignment:

>>> from rubicon.objc import NSMutableArray
>>> mutarray = NSMutableArray.arrayWithArray(list(range(4)))
>>> mutarray[0] = 42
>>> mutarray
<ObjCMutableListInstance: __NSArrayM at 0x10b8558d0: <__NSArrayM 0x7f86fb04d9f0>(
42,
1,
2,
3
)
>

(continues on next page)

14 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/library/functions.html#repr

Rubicon Documentation, Release 0.4.9

(continued from previous page)

>>> mutarray[1:3] = [9, 8, 7]
>>> mutarray
<ObjCMutableListInstance: __NSArrayM at 0x10b8558d0: <__NSArrayM 0x7f86fb04d9f0>(
42,
9,
8,
7,
3
)
>

Sequence methods like index and pop are also supported:

>>> mutarray.index(7)
3
>>> mutarray.pop(3)
7

Note: Python objects stored in an NSArray are converted to Objective-C objects using the rules described in Argument
conversion.

Dictionaries

NSDictionary objects behave like any other Python mapping - their items can be accessed and standard operations
like len() and in are supported:

>>> from rubicon.objc import NSDictionary
>>> d = objc.NSDictionary.dictionaryWithDictionary({"one": 1, "two": 2})
>>> d["one"]
1
>>> len(d)
>>> 2
>>> "two" in d
True
>>> "five" in d
False

Note: ObjCInstance objects wrapping a NSDictionary internally have the class ObjCDictInstance or
ObjCMutableDictInstance, and you will see these names in the repr() of NSDictionary objects. This is an
implementation detail - you should not refer to the ObjCDictInstance and ObjCMutableDictInstance classes
explicitly in your code.

NSMutableDictionary objects additionally support mutating operations, like item assignment:

>>> md = objc.NSMutableDictionary.dictionaryWithDictionary({"one": 1, "two": 2})
>>> md["three"] = 3
>>> md
<ObjCMutableDictInstance: __NSDictionaryM at 0x10b8a7860: {

(continues on next page)

2.2. How-to Guides 15

https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/library/functions.html#repr

Rubicon Documentation, Release 0.4.9

(continued from previous page)

one = 1;
three = 3;
two = 2;

}>

Mapping methods like keys and values are also supported:

>>> d.keys()
<ObjCListInstance: __NSArrayI at 0x10b898a90: <__NSArrayI 0x7f86f8db6b70>(
one,
two
)
>
>>> d.values()
<ObjCListInstance: __NSArrayI at 0x10b8a7b38: <__NSArrayI 0x7f86f8c00370>(
1,
2
)
>

Note: Python objects stored in an NSDictionary are converted to Objective-C objects using the rules described in
Argument conversion.

Manual conversions

If necessary, you can also manually call Rubicon’s type conversion functions, to convert objects between Python and
Objective-C when Rubicon doesn’t do so automatically.

Converting from Python to Objective-C

The function ns_from_py() (also available as at() for short) can convert most standard Python objects to Foundation
equivalents. For a full list of possible conversions, see the reference documentation for ns_from_py().

These conversions are performed automatically when a Python object is passed into an Objective-C method parameter
that expects an object - in that case you do not need to call ns_from_py() manually (see Argument conversion).

Converting from Objective-C to Python

The function py_from_ns() can convert many common Foundation objects to Python equivalents. For a full list of
possible conversions, see the reference documentation for py_from_ns().

These conversions are not performed automatically by Rubicon. For example, if an Objective-C method returns an
NSString, Rubicon will return it as an ObjCInstance (with some additional Python methods - see Python-style APIs
and methods for Objective-C objects). Using py_from_ns(), you can convert the NSString to a real Python str.

When converting collections, such as NSArray or NSDictionary, py_from_ns() will convert them recursively to
a pure Python object. For example, if nsarray is an NSArray containing NSStrings, py_from_ns(nsarray) will
return a list of strs. In most cases, that is the desired behavior, but you can also avoid this recursive conversion
by passing the Foundation collection into a Python collection constructor: for example list(nsarray) will return a
list of NSStrings.

16 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

Rubicon Documentation, Release 0.4.9

2.2.3 Memory management for Objective-C instances

Reference counting works differently in Objective-C compared to Python. Python will automatically track where vari-
ables are referenced and free memory when the reference count drops to zero whereas Objective-C uses explicit ref-
erence counting to manage memory. The methods retain, release and autorelease are used to increase and
decrease the reference counts as described in the Apple developer documentation. When enabling automatic reference
counting (ARC), the appropriate calls for memory management will be inserted for you at compile-time. However,
since Rubicon Objective-C operates at runtime, it cannot make use of ARC.

Reference counting in Rubicon Objective-C

You won’t have to manage reference counts in Python, Rubicon Objective-C will do that work for you. It does so by
tracking when you gain ownership of an object. This is the case when you create an Objective-C instance using a method
whose name begins with alloc, new, copy, or mutableCopy. Rubicon Objective-C will then insert a release call
when the Python variable that corresponds to the Objective-C instance is deallocated.

An exception to this is when you manually retain an object. Rubicon Objective-C will not keep track of such retain
calls and you will be responsible to insert appropriate release calls yourself.

You will also need to pay attention to reference counting in case of weak references. In Objective-C, creating a weak
reference means that the reference count of the object is not incremented and the object will still be deallocated when
no strong references remain. Any weak references to the object are then set to nil.

Some objects will store references to other objects as a weak reference. Such properties will be declared in the Apple
developer documentation as “@property(weak)” or “@property(assign)”. This is commonly the case for delegates.
For example, in the code below, the NSOutlineView only stores a weak reference to the object which is assigned to
its delegate property:

from rubicon.objc import NSObject, ObjCClass
from rubicon.objc.runtime import load_library

app_kit = load_library("AppKit")
NSOutlineView = ObjCClass("NSOutlineView")

outline_view = NSOutlineView.alloc().init()
delegate = NSObject.alloc().init()

outline_view.delegate = delegate

You will need to keep a reference to the Python variable delegate so that the corresponding Objective-C instance
does not get deallocated.

Reference cycles in Objective-C

Python has a garbage collector which detects references cycles and frees objects in such cycles if no other references
remain. Cyclical references can be useful in a number of cases, for instance to refer to a “parent” of an instance, and
Python makes life easier by properly freeing such references. For example:

class TreeNode:
def __init__(self, val):

self.val = val
self.parent = None
self.children = []

(continues on next page)

2.2. How-to Guides 17

https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/MemoryMgmt/Articles/MemoryMgmt.html

Rubicon Documentation, Release 0.4.9

(continued from previous page)

root = TreeNode("/home")

child = TreeNode("/Documents")
child.parent = root

root.children.append(child)

This will free both root and child on
the next garbage collection cycle:
del root
del child

Similar code in Objective-C will lead to memory leaks. This also holds for Objective-C instances created through
Rubicon Objective-C since Python’s garbage collector is unable to detect reference cycles on the Objective-C side. If
you are writing code which would lead to reference cycles, consider storing objects as weak references instead. The
above code would be written as follows when using Objective-C classes:

from rubicon.objc import NSObject, NSMutableArray
from rubicon.objc.api import objc_property, objc_method

class TreeNode(NSObject):
val = objc_property()
children = objc_property()
parent = objc_property(weak=True)

@objc_method
def initWithValue_(self, val):

self.val = val
self.children = NSMutableArray.new()
return self

root = TreeNode.alloc().initWithValue("/home")

child = TreeNode.alloc().initWithValue("/Documents")
child.parent = root

root.children.addObject(child)

This will free both root and child:
del root
del child

18 Chapter 2. Community

Rubicon Documentation, Release 0.4.9

2.2.4 Using and creating Objective-C protocols

Protocols are used in Objective-C to declare a set of methods and properties for a class to implement. They have a
similar purpose to ABCs (abstract base classes) in Python.

Looking up a protocol

Protocol objects can be looked up using the ObjCProtocol constructor, similar to how classes can be looked up using
ObjCClass:

>>> NSCopying = ObjCProtocol('NSCopying')
>>> NSCopying
<ObjCProtocol: NSCopying>

The isinstance function can be used to check whether an object conforms to a protocol:

>>> isinstance(NSObject.new(), NSCopying)
False
>>> isinstance(NSArray.array(), NSCopying)
True

Implementing a protocol

When writing a custom Objective-C class, you might want to have it conform to one or multiple protocols. In Rubi-
con, this is done by using the protocols keyword argument in the base class list. For example, if you have a class
UserAccount and want it to conform to NSCopyable, you would write it like this:

class UserAccount(NSObject, protocols=[NSCopying]):
username = objc_property()
emailAddress = objc_property()

@objc_method
def initWithUsername_emailAddress_(self, username, emailAddress):

self = self.init()
if self is None:

return None
self.username = username
self.emailAddress = emailAddress
return self

This method is required by NSCopying.
The "zone" parameter is obsolete and can be ignored, but must be included for␣

→˓backwards compatibility.
This method is not normally used directly. Usually you call the copy method␣

→˓instead,
which calls copyWithZone: internally.
@objc_method
def copyWithZone_(self, zone):

return UserAccount.alloc().initWithUsername(self.username, emailAddress=self.
→˓emailAddress)

We can now use our class. The copy method (which uses our implemented copyWithZone: method) can also be
used:

2.2. How-to Guides 19

Rubicon Documentation, Release 0.4.9

>>> ua = UserAccount.alloc().initWithUsername_emailAddress_(at('person'), at(
→˓'person@example.com'))
>>> ua
<ObjCInstance: UserAccount at 0x106543210: <UserAccount: 0x106543220>>
>>> ua.copy()
<ObjCInstance: UserAccount at 0x106543210: <UserAccount: 0x106543220>>

And we can check that the class conforms to the protocol:

>>> isinstance(ua, NSCopying)
True

Writing custom protocols

You can also create custom protocols. This works similarly to creating custom Objective-C classes:

class Named(metaclass=ObjCProtocol):
name = objc_property()

@objc_method
def sayName(self):

...

There are two notable differences between creating classes and protocols:

1. Protocols do not need to extend exactly one other protocol - they can also extend multiple protocols, or none at all.
When not extending other protocols, as is the case here, we need to explicitly add metaclass=ObjCProtocol
to the base class list, to tell Python that this is a protocol and not a regular Python class. When extending other
protocols, Python detects this automatically.

2. Protocol methods do not have a body. Python has no dedicated syntax for functions without a body, so we put
... in the body instead. (You could technically put code in the body, but this would be misleading and is not
recommended.)

2.2.5 Asynchronous Programming with Rubicon

One of the banner features of Python 3 is the introduction of native asynchronous programming, implemented in
asyncio.

For an introduction to the use of asynchronous programming, see the documentation for the asyncio module.

Integrating asyncio with CoreFoundation

The asyncio module provides an event loop to coordinate asynchronous features. However, if you’re running an
Objective C GUI application, you probably already have an event loop - the one provided by CoreFoundation. This
CoreFoundation event loop is then wrapped by NSApplication or UIApplication in end-user code.

However, you can’t have two event loops running at the same time, so you need a way to integrate the two. Luckily,
asyncio provides a way to customize it’s event loop so it can be integrated with other event sources.

It does this using an Event Loop Policy. Rubicon provides an Core Foundation Event Loop Policy that inserts Core
Foundation event handling into the asyncio event loop.

To use asyncio in a pure Core Foundation application, do the following:

20 Chapter 2. Community

https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://docs.python.org/3/library/asyncio.html#module-asyncio

Rubicon Documentation, Release 0.4.9

Import the Event Loop Policy
from rubicon.objc.eventloop import EventLoopPolicy

Install the event loop policy
asyncio.set_event_loop_policy(EventLoopPolicy())

Create an event loop, and run it!
loop = asyncio.new_event_loop()
loop.run_forever()

The last call (loop.run_forever()) will, as the name suggests, run forever - or, at least, until an event handler calls
loop.stop() to terminate the event loop.

Integrating asyncio with AppKit and NSApplication

If you’re using AppKit and NSApplication, you don’t just need to start the CoreFoundation event loop - you need to start
the full NSApplication life cycle. To do this, you pass the application instance into the call to loop.run_forever():

Import the Event Loop Policy and lifecycle
from rubicon.objc.eventloop import EventLoopPolicy, CocoaLifecycle

Install the event loop policy
asyncio.set_event_loop_policy(EventLoopPolicy())

Get a handle to the shared NSApplication
from ctypes import cdll, util
from rubicon.objc import ObjCClass

appkit = cdll.LoadLibrary(util.find_library('AppKit'))
NSApplication = ObjCClass('NSApplication')
NSApplication.declare_class_property('sharedApplication')
app = NSApplication.sharedApplication

Create an event loop, and run it, using the NSApplication!
loop = asyncio.new_event_loop()
loop.run_forever(lifecycle=CocoaLifecycle(app))

Again, this will run “forever” – until either loop.stop() is called, or terminate: is invoked on the NSApplication.

Integrating asyncio with iOS and UIApplication

If you’re using UIKit and UIApplication on iOS, you need to use the iOS life cycle. To do this, you pass an
iOSLifecycle object into the call to loop.run_forever():

Import the Event Loop Policy and lifecycle
from rubicon.objc.eventloop import EventLoopPolicy, iOSLifecycle

Install the event loop policy
asyncio.set_event_loop_policy(EventLoopPolicy())

Create an event loop, and run it, using the UIApplication!
(continues on next page)

2.2. How-to Guides 21

Rubicon Documentation, Release 0.4.9

(continued from previous page)

loop = asyncio.new_event_loop()
loop.run_forever(lifecycle=iOSLifecycle())

Again, this will run “forever” – until either loop.stop() is called, or terminate: is invoked on the UIApplication.

2.2.6 Calling plain C functions from Python

Most Objective-C APIs are exposed through Objective-C classes and methods, but some parts are implemented as
plain C functions. You might also want to want to use a pure C library that provides no Objective-C interface at all.
Calling C functions is quite different from calling Objective-C methods and requires some additional work, which will
be explained in this how-to.

See also:

The ctypes tutorial in the Python documentation, which explains how to call C functions in general (without a specific
focus on Apple platforms and Objective-C).

A simple example: puts

We’ll start with a simple example: calling the puts function from the C standard library. puts takes a C string and
outputs it to standard output — it’s the C equivalent of a simple print call.

Before we can call the function, we need to look it up first. To do this, we need to find and load the library in which
the function is defined. In the case of standard C functions, this is the standard C library, libc. Because this library is
commonly used, Rubicon already loads it by default and exposes it in Python as rubicon.objc.runtime.libc.

>>> from rubicon.objc.runtime import libc
>>> libc
<CDLL '/usr/lib/libc.dylib', handle 7fff60d0cb90 at 0x105850b38>

Note: For a list of all C libraries that Rubicon loads and exposes by default, see the C libraries section of the rubicon.
objc.runtime reference documentation.

To access a library that is not predefined by Rubicon, you can use the load_library() function:

>>> from rubicon.objc.runtime import load_library
>>> libm = load_library("m")
>>> libm
<CDLL '/usr/lib/libm.dylib', handle 7fff60d0cb90 at 0x10596be10>

C functions are accessed as attributes on their library:

>>> libc.puts
<_FuncPtr object at 0x110178f20>

However, unlike Objective-C methods, we cannot call C functions right away — we must first declare the function’s
argument and return types. (Rubicon cannot do this automatically like with Objective-C methods, because plain C
doesn’t provide the runtime type information necessary for this.) This type information is found in C header files, in
this case stdio.h (which defines standard C input/output functions, including puts).

The exact location of the macOS C headers varies depending on your version of macOS and the developer tools — it
is not a fixed path. To open the header directory in the Finder, run the following command in the terminal:

22 Chapter 2. Community

https://docs.python.org/3/library/ctypes.html#ctypes-tutorial

Rubicon Documentation, Release 0.4.9

$ open "$(xcrun --show-sdk-path)/usr/include"

Note: This command requires a version of the macOS developer tools to be installed. If you do not have Xcode or the
command-line developer tools installed yet, run this command in the terminal to install the command-line developer
tools:

$ xcode-select --install

Once you have opened the relevant header file in a text editor, you need to search for the declaration of the function
you’re looking for. In the case of puts, it looks like this:

int puts(const char *);

This means that puts returns an int and takes a single argument of type const char * (a pointer to one or more
characters, i.e. a C string). This translates to the following Python ctypes code:

>>> from ctypes import c_char_p, c_int
>>> libc.puts.restype = c_int
>>> libc.puts.argtypes = [c_char_p]

Now that we have provided all of the necessary type information, we can call libc.puts.

For the c_char_p argument, we pass a byte string with the message we want to print out. ctypes automatically
converts the byte string object to a c_char_p (char *) as the C function expects it. The string specifically needs to
be a byte string (bytes), because C’s char * strings are byte-based, unlike normal Python strings (str), which are
Unicode-based.

>>> res = libc.puts(b"Hello!")
Hello!

Note: If you’re running this code from an editor or IDE and don’t see Hello! printed out, try running the code from a
Python REPL in a terminal window instead. Some editors/IDEs, such as Python’s IDLE, can only capture and display
output produced by high-level Python functions (such as print), but not output from low-level C functions (such as
puts).

The return value of puts is ignored in this example. It indicates whether or not the call was successful. If puts
succeeds, it returns a non-negative integer (the exact value is not significant and has no defined meaning). If puts
encounters an error, it returns the EOF constant (on Apple OSes, this is -1).

The puts function generally doesn’t fail, except for edge cases that are unlikely to happen in practice. With most other
C functions, you need to be more careful about checking the return value, to make sure that errors from the function
call are detected and handled. Unlike in Python, if you forget to check whether a C function call failed, any errors from
that call are silently ignored, which often leads to bad behavior or crashes.

Most real examples of C functions are more complicated than puts, but the basic procedure for calling them is the
same: import or load the function’s C library, set the function’s return type and argument types based on the relevant
header, and then call the function as needed.

Each C library only needs to be imported/loaded once, and the restype and argtypes only need to be set once per
function. This is usually done at module level near the beginning of the module, similar to Python imports.

2.2. How-to Guides 23

Rubicon Documentation, Release 0.4.9

Inline functions (e.g. NSLocationInRange)

Regular C functions can be called as explained above, but there is also a second kind of C function that needs to be
handled differently: inline functions. Unlike regular C functions, inline functions cannot be called through a library
object at runtime. Instead, their implementation is only provided as source code in a header file.

When an inline function is called from regular C code, the C compiler copies (inlines) the inline function’s implemen-
tation into the calling code. To call an inline C function from Python, we need to do the same thing — copy the code
from the header into our own code — but in addition we need to translate the C code from the header into equivalent
Python/ctypes code.

As an example we will use the function NSLocationInRange from the Foundation framework. This function checks
whether an index lies inside a NSRange value. The definition of this function, from the Foundation header NSRange.h,
looks like this:

NS_INLINE BOOL NSLocationInRange(NSUInteger loc, NSRange range) {
return (!(loc < range.location) && (loc - range.location) < range.length) ? YES : NO;

}

In this case, the translation to Python consists (roughly) of the following steps:

1. The outer part of the function definition needs to be translated to Python’s def syntax. The return type and
argument types can be omitted in the Python code — because Python is dynamically typed, these explicit types
are not needed.

2. The YES and NO constants in the return expressions need to be replaced with their Python equivalents, True
and False.

3. Some operators in the return expression need to be changed: C !cond translates to Python not cond, C
left && right becomes left and right, and C cond ? true_val : false_val becomes true_val
if cond else false_val.

The translated Python code looks like this:

def NSLocationInRange(loc, range):
return True if (not (loc < range.location) and (loc - range.location) < range.

→˓length) else False

You can then put this translated function into your Python code and call it in place of the corresponding C inline
function.

Note: Python code translated from C like this is sometimes more complicated than necessary and can be simplified.
In this case for example, True if cond else False can be simplified to just cond, not (x < y) can be simplified
to x >= y, and a few redundant parentheses can be removed. A cleaner version of the translated code might look like
this:

def NSLocationInRange(loc, range):
return loc >= range.location and loc - range.location < range.length

24 Chapter 2. Community

Rubicon Documentation, Release 0.4.9

Global variables and constants (e.g. NSFoundationVersionNumber)

Some C libraries expose not just functions, but also global variables. An example of this is the Foundation framework,
which defines the global variable NSFoundationVersionNumber in <Foundation/NSObjCRuntime.h>:

FOUNDATION_EXPORT double NSFoundationVersionNumber;

Like functions, global variables are accessed via the library that they are defined by. The syntax is somewhat different
for global variables though - instead of reading them directly as attributes of the library object, you use the in_dll
method of the variable’s type. (Every ctypes type has an in_dll method.)

>>> from ctypes import c_double
>>> from rubicon.objc.runtime import Foundation
>>> NSFoundationVersionNumber = c_double.in_dll(Foundation, "NSFoundationVersionNumber")
>>> NSFoundationVersionNumber
c_double(1575.23)

Note that in_dll doesn’t return the variable’s value directly - instead it returns a ctypes data object that has the
variable’s type, in this case c_double. To access the variable’s actual value, you can use the data object’s value
attribute:

>>> NSFoundationVersionNumber.value
1575.23

Objective-C object constants

A special case of global variables is often found in Objective-C libraries: object constants. These are global Objective-
C object variables with a const modifier, meaning that they cannot be modified. Constants of type NSString * are
especially common and can be found in many places, such as Foundation’s <Foundation/NSMetadataAttribute.
h>:

FOUNDATION_EXPORT NSString * const NSMetadataItemFSNameKey;

Because they are so common, Rubicon provides the convenience function objc_const specifically for accessing
Objective-C object constants:

>>> from rubicon.objc import objc_const
>>> from rubicon.objc.runtime import Foundation
>>> NSMetadataItemFSNameKey = objc_const(Foundation, "NSMetadataItemFSNameKey")
>>> NSMetadataItemFSNameKey
<ObjCStrInstance: __NSCFConstantString at 0x10eecf350: kMDItemFSName>

Note: Sometimes it’s not obvious that a constant is an Objective-C object, because its actual type is hidden behind a
typedef. This is common with the “extensible string enum” pattern, where a set of related string constants are defined
together. An example can be found in <Foundation/NSCalendar.h>:

typedef NSString * NSCalendarIdentifier NS_EXTENSIBLE_STRING_ENUM;

FOUNDATION_EXPORT NSCalendarIdentifier const NSCalendarIdentifierGregorian;
FOUNDATION_EXPORT NSCalendarIdentifier const NSCalendarIdentifierBuddhist;
FOUNDATION_EXPORT NSCalendarIdentifier const NSCalendarIdentifierChinese;
// ... many more ...

2.2. How-to Guides 25

Rubicon Documentation, Release 0.4.9

Even though the constants use the type name NSCalendarIdentifier, their actual type is still NSString *, based
on the typedef before.

In some cases, constants use a typedef from a different header (or even a different library) than the one defining the
constants, which can make it even harder to tell that they are actually Objective-C objects.

A complex example: dispatch_get_main_queue

As a final example, we’ll look at the function dispatch_get_main_queue from the libdispatch library. This is
a very complex function definition, which involves many of the concepts introduced above, as well as heavy use of C
pre-processor macros. If you don’t have a lot of experience with the C pre-processor, you may want to skip this section.

First, we need to look at the function’s definition, which is found in the header <dispatch/queue.h>:

DISPATCH_INLINE DISPATCH_ALWAYS_INLINE DISPATCH_CONST DISPATCH_NOTHROW
dispatch_queue_main_t
dispatch_get_main_queue(void)
{

return DISPATCH_GLOBAL_OBJECT(dispatch_queue_main_t, _dispatch_main_q);
}

This is an inline function, which you can see based on the fact that it has a function body and the
DISPATCH_INLINE/DISPATCH_ALWAYS_INLINE attributes. This means that we cannot look it up directly using
ctypes - instead we have to translate the function body from C to Python.

We can ignore the first line of the function definition - they contain function attributes intended for the compiler, which
we don’t need. The second and third line indicate the function’s signature - it takes no arguments and returns a value
of type dispatch_queue_main_t.

The body is a little more complex: it uses DISPATCH_GLOBAL_OBJECT, which is actually a C macro. Its definition can
be found in <dispatch/object.h>:

#define DISPATCH_GLOBAL_OBJECT(type, object) ((OS_OBJECT_BRIDGE type)&(object))

If we substitute the macro’s parameters (type and object) for their real values in our case
(dispatch_queue_main_t and _dispatch_main_q), we get the expression ((OS_OBJECT_BRIDGE
dispatch_queue_main_t)&(_dispatch_main_q)). OS_OBJECT_BRIDGE is also a macro, this time from
<os/object.h>:

#define OS_OBJECT_BRIDGE __bridge

It expands to __bridge, which is an attribute related to Objective-C’s automatic reference counting (ARC)
feature. In the context of Rubicon, ARC is not relevant (Rubicon performs its own reference man-
agement for Objective-C objects), so we can ignore this attribute. This leaves us with the expression
((dispatch_queue_main_t)&(_dispatch_main_q)), which we can substitute for the macro call in our original
function:

dispatch_queue_main_t
dispatch_get_main_queue(void)
{

return (dispatch_queue_main_t)&(_dispatch_main_q));
}

With the macro expansion done, we can now see what the function does: it takes a pointer to the global variable
_dispatch_main_q and casts it to the type dispatch_queue_main_t.

26 Chapter 2. Community

Rubicon Documentation, Release 0.4.9

First, let’s look at the definition of the _dispatch_main_q variable, from <dispatch/queue.h>:

DISPATCH_EXPORT
struct dispatch_queue_s _dispatch_main_q;

The variable’s type, struct dispatch_queue_s, is an opaque structure type - it is not defined in any public header.
This means that we don’t know what fields the structure has, or even how large it is. As a result, we cannot per-
form any operations on the structure itself, but we can work with pointers to the structure - which is exactly what
dispatch_get_main_queue does.

Even though struct dispatch_queue_s is opaque, we still need to define it in Python so that we can look up the
_dispatch_main_q variable:

from ctypes import Structure
from rubicon.objc.runtime import load_library

On Mac, libdispatch is part of libSystem.
libSystem = load_library("System")
libdispatch = libSystem

class struct_dispatch_queue_s(Structure):
pass # No _fields_, because this is an opaque structure.

_dispatch_main_q = struct_dispatch_queue_s.in_dll(libdispatch, "_dispatch_main_q")

Now we need to look at the definition of the dispatch_queue_main_t type. This definition is not very obvious to
find - it’s actually this line in <dispatch/queue.h>:

DISPATCH_DECL_SUBCLASS(dispatch_queue_main, dispatch_queue_serial);

DISPATCH_DECL_SUBCLASS is a macro from <dispatch/object.h>, defined like this:

#define DISPATCH_DECL_SUBCLASS(name, base) OS_OBJECT_DECL_SUBCLASS(name, base)

It directly calls another macro, OS_OBJECT_DECL_SUBCLASS, defined in <os/object.h>:

#define OS_OBJECT_DECL_SUBCLASS(name, super) \
OS_OBJECT_DECL_IMPL(name, <OS_OBJECT_CLASS(super)>)

Let’s substitute this macro into our original code:

OS_OBJECT_DECL_IMPL(dispatch_queue_main, <OS_OBJECT_CLASS(dispatch_queue_serial)>);

Next is the OS_OBJECT_DECL_IMPL macro, also defined in <os/object.h>:

#define OS_OBJECT_DECL_IMPL(name, ...) \
OS_OBJECT_DECL_PROTOCOL(name, __VA_ARGS__) \
typedef NSObject<OS_OBJECT_CLASS(name)> \

* OS_OBJC_INDEPENDENT_CLASS name##_t

After we substitute this macro into our code, it looks like this:

OS_OBJECT_DECL_PROTOCOL(dispatch_queue_main, <OS_OBJECT_CLASS(dispatch_queue_serial)>) \
typedef NSObject<OS_OBJECT_CLASS(dispatch_queue_main)> \

* OS_OBJC_INDEPENDENT_CLASS dispatch_queue_main_t;

2.2. How-to Guides 27

Rubicon Documentation, Release 0.4.9

And another macro, OS_OBJECT_DECL_PROTOCOL, also from <os/object.h>:

#define OS_OBJECT_DECL_PROTOCOL(name, ...) \
@protocol OS_OBJECT_CLASS(name) __VA_ARGS__ \
@end

Which we can substitute into our code:

@protocol OS_OBJECT_CLASS(dispatch_queue_main) <OS_OBJECT_CLASS(dispatch_queue_serial)> \
@end \
typedef NSObject<OS_OBJECT_CLASS(dispatch_queue_main)> \

* OS_OBJC_INDEPENDENT_CLASS dispatch_queue_main_t;

Now let’s take care of the OS_OBJECT_CLASS macro, defined like this in <os/object.h>:

#define OS_OBJECT_CLASS(name) OS_##name

And substituted into our code:

@protocol OS_dispatch_queue_main <OS_dispatch_queue_serial> \
@end \
typedef NSObject<OS_dispatch_queue_main> \

* OS_OBJC_INDEPENDENT_CLASS dispatch_queue_main_t;

Finally we’re left with the OS_OBJECT_INDEPENDENT_CLASS macro, which is a compiler attribute that we can ignore.

@protocol OS_dispatch_queue_main <OS_dispatch_queue_serial>
@end
typedef NSObject<OS_dispatch_queue_main> * dispatch_queue_main_t;

Now we’re done with macro expansion and can see what the code actually does - it defines an Objective-C protocol
called OS_dispatch_queue_main and defines dispatch_queue_main_t as a pointer type to an object conforming to
that protocol. For our purposes, most of these details don’t matter - the important part is that dispatch_queue_main_t
is actually an Objective-C object pointer type. Because Rubicon doesn’t differentiate between object pointer types, we
can replace dispatch_queue_main_t in our original function with the generic id type:

id
dispatch_get_main_queue(void)
{

return (id)&(_dispatch_main_q));
}

This code can finally be translated to Python:

from ctypes import byref, cast
from rubicon.objc import ObjCInstance
from rubicon.objc.runtime import objc_id

This requires the _dispatch_main_q Python code from before.

def dispatch_get_main_queue():
return ObjCInstance(cast(byref(_dispatch_main_q), objc_id))

28 Chapter 2. Community

Rubicon Documentation, Release 0.4.9

Further information

• cdecl.org: An online service to translate C type syntax into more understandable English.

• cppreference.com: A reference site about the standard C and C++ languages and libraries.

• Apple’s reference documentation: Official API documentation for Apple platforms. Make sure to change the
language to Objective-C in the top-right corner, otherwise you’ll get Swift documentation, which can differ
significantly from Objective-C.

• macOS man pages, sections 2 and 3: Documentation for the C functions provided by macOS. View these using
the man command, or by typing a function name into the search box of the macOS Terminal’s Help menu.

2.2.7 How to contribute code to Rubicon

If you experience problems with Rubicon, log them on GitHub. If you want to contribute code, please fork the code
and submit a pull request.

Set up your development environment

The recommended way of setting up your development environment for Rubicon is to clone the repository, create a
virtual environment, and install the required dependencies:

$ git clone https://github.com/beeware/rubicon-objc.git
$ cd rubicon-objc
$ python3 -m venv venv
$ source venv/bin/activate
(venv) $ python3 -m pip install -Ue ".[dev]"

Rubicon uses a tool called Pre-Commit to identify simple issues and standardize code formatting. It does this by
installing a git hook that automatically runs a series of code linters prior to finalizing any git commit. To enable
pre-commit, run:

(venv) $ pre-commit install
pre-commit installed at .git/hooks/pre-commit

When you commit any change, pre-commit will run automatically. If there are any issues found with the commit, this
will cause your commit to fail. Where possible, pre-commit will make the changes needed to correct the problems it
has found:

(venv) $ git add some/interesting_file.py
(venv) $ git commit -m "Minor change"
black..Failed
- hook id: black
- files were modified by this hook

reformatted some/interesting_file.py

All done!
1 file reformatted.

flake8...Passed
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped

(continues on next page)

2.2. How-to Guides 29

https://cdecl.org/
https://en.cppreference.com/w/
https://developer.apple.com/documentation/
https://github.com/beeware/rubicon-objc/issues
https://github.com/beeware/rubicon-objc
https://github.com/beeware/rubicon-objc/pulls
https://pre-commit.com

Rubicon Documentation, Release 0.4.9

(continued from previous page)

check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed
isort..Passed
pyupgrade..Passed
docformatter...Passed

You can then re-add any files that were modified as a result of the pre-commit checks, and re-commit the change.

(venv) $ git add some/interesting_file.py
(venv) $ git commit -m "Minor change"
black..Passed
flake8...Passed
check toml...(no files to check)Skipped
check yaml...(no files to check)Skipped
check for case conflicts...Passed
check docstring is first...Passed
fix end of files...Passed
trim trailing whitespace...Passed
isort..Passed
pyupgrade..Passed
docformatter...Passed
[bugfix e3e0f73] Minor change
1 file changed, 4 insertions(+), 2 deletions(-)

Rubicon uses tox to manage the testing process. To set up a testing environment and run the full test suite, run:

(venv) $ tox

By default this will run the test suite multiple times, once on each Python version supported by Rubicon, as well as
running some pre-commit checks of code style and validity. This can take a while, so if you want to speed up the
process while developing, you can run the tests on one Python version only:

(venv) $ tox -e py

Or, to run using a specific version of Python:

(venv) $ tox -e py310

substituting the version number that you want to target. You can also specify one of the pre-commit checks flake8, docs
or package to check code formatting, documentation syntax and packaging metadata, respectively.

Now you are ready to start hacking on Rubicon. Have fun!

30 Chapter 2. Community

https://tox.wiki/en/latest/

Rubicon Documentation, Release 0.4.9

2.2.8 Contributing to the documentation

Here are some tips for working on this documentation. You’re welcome to add more and help us out!

First of all, you should check the reStructuredText (reST) Primer to learn how to write your .rst file.

Create a .rst file

Look at the structure and choose the best category to put your .rst file. Make sure that it is referenced in the index
of the corresponding category, so it will show on in the documentation. If you have no idea how to do this, study the
other index files for clues.

Build documentation locally

To build the documentation locally, set up a development environment.

You’ll also need to install the Enchant spell checking library. Enchant can be installed using Homebrew:

(venv) $ brew install enchant

If you’re on an M1 machine, you’ll also need to manually set the location of the Enchant library:

(venv) $ export PYENCHANT_LIBRARY_PATH=/opt/homebrew/lib/libenchant-2.2.dylib

Once your development environment is set up, run:

(venv) $ tox -e docs

The output of the file should be in the docs/_build/html folder. If there are any markup problems, they’ll raise an
error.

Documentation linting

Before committing and pushing documentation updates, run linting for the documentation:

macOS

Linux

Windows

(venv) $ tox -e docs-lint

(venv) $ tox -e docs-lint

C:\...>tox -e docs-lint

This will validate the documentation does not contain:

• invalid syntax and markup

• dead hyperlinks

• misspelled words

If a valid spelling of a word is identified as misspelled, then add the word to the list in docs/spelling_wordlist.
This will add the word to the spellchecker’s

2.2. How-to Guides 31

https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://brew.sh

Rubicon Documentation, Release 0.4.9

Rebuilding all documentation

To force a rebuild for all of the documentation:

macOS

Linux

Windows

(venv) $ tox -e docs-all

(venv) $ tox -e docs-all

C:\...>tox -e docs-all

The documentation should be fully rebuilt in the docs/_build/html folder. If there are any markup problems, they’ll
raise an error.

Live documentation preview

To support rapid editing of documentation, Rubicon also has a “live preview” mode:

macOS

Linux

Windows

(venv) $ tox -e docs-live

(venv) $ tox -e docs-live

(venv) C:\...>tox -e docs-live

This will build the documentation, start a web server to serve the build documentation, and watch the file system for
any changes to the documentation source. If a change is detected, the documentation will be rebuilt, and any browser
viewing the modified page will be automatically refreshed.

Live preview mode will only monitor the docs directory for changes. If you’re updating the inline documentation
associated with Toga source code, you’ll need to use the docs-live-src target to build docs:

macOS

Linux

Windows

(venv) $ tox -e docs-live-src

(venv) $ tox -e docs-live-src

(venv) C:\...>tox -e docs-live-src

This behaves the same as docs-live, but will also monitor any changes to the src/rubicon/objc folder, reflecting
any changes to inline documentation. However, the rebuild process takes much longer, so you may not want to use this
target unless you’re actively editing inline documentation.

32 Chapter 2. Community

Rubicon Documentation, Release 0.4.9

2.2.9 Internal How-to guides

These guides are for the maintainers of the Rubicon-ObjC project, documenting internal project procedures.

How to cut a Rubicon-ObjC release

The release infrastructure for Rubicon is semi-automated, using GitHub Actions to formally publish releases.

This guide assumes that you have an upstream remote configured on your local clone of the Rubicon repository,
pointing at the official repository. If all you have is a checkout of a personal fork of the Rubicon-ObjC repository, you
can configure that checkout by running:

$ git remote add upstream https://github.com/beeware/rubicon-objc.git

The procedure for cutting a new release is as follows:

1. Check the contents of the upstream repository’s main branch:

$ git fetch upstream
$ git checkout --detach upstream/main

Check that the HEAD of release now matches upstream/main.

2. Ensure that the release notes are up to date. Run:

$ tox -e towncrier -- --draft

to review the release notes that will be included, and then:

$ tox -e towncrier

to generate the updated release notes.

3. Tag the release, and push the tag upstream:

$ git tag v1.2.3
$ git push upstream HEAD:main
$ git push upstream v1.2.3

4. Pushing the tag will start a workflow to create a draft release on GitHub. You can follow the progress of the
workflow on GitHub; once the workflow completes, there should be a new draft release, and an entry on the Test
PyPI server.

Confirm that this action successfully completes. If it fails, there’s a couple of possible causes:

a. The final upload to Test PyPI failed. Test PyPI is not have the same service monitoring as PyPI-proper, so
it sometimes has problems. However, it’s also not critical to the release process; if this step fails, you can
perform Step 6 by manually downloading the “packages” artifact from the GitHub workflow instead.

b. Something else fails in the build process. If the problem can be fixed without a code change to the Rubicon-
ObjC repository (e.g., a transient problem with build machines not being available), you can re-run the
action that failed through the GitHub Actions GUI. If the fix requires a code change, delete the old tag,
make the code change, and re-tag the release.

5. Create a clean virtual environment, install the new release from Test PyPI, and perform any pre-release testing
that may be appropriate:

2.2. How-to Guides 33

https://github.com/beeware/rubicon-objc/actions?query=workflow%3A%22Create+Release%22
https://github.com/beeware/rubicon-objc/actions?query=workflow%3A%22Create+Release%22
https://github.com/beeware/rubicon-objc/releases
https://test.pypi.org/project/rubicon-objc/
https://test.pypi.org/project/rubicon-objc/

Rubicon Documentation, Release 0.4.9

$ python3 -m venv testvenv
$. ./testvenv/bin/activate
(testvenv) $ pip install --extra-index-url https://test.pypi.org/simple/ rubicon-
→˓objc==1.2.3
(testvenv) $ python -c "from rubicon.objc import __version__; print(__version__)"
1.2.3
(testvenv) $ #... any other manual checks you want to perform ...

6. Log into ReadTheDocs, visit the Versions tab, and activate the new version. Ensure that the build completes; if
there’s a problem, you may need to correct the build configuration, roll back and re-tag the release.

7. Edit the GitHub release to add release notes. You can use the text generated by Towncrier, but you’ll need to
update the format to Markdown, rather than ReST. If necessary, check the pre-release checkbox.

8. Double check everything, then click Publish. This will trigger a publication workflow on GitHub.

9. Wait for the package to appear on PyPI.

Congratulations, you’ve just published a release!

If anything went wrong during steps 3 or 5, you will need to delete the draft release from GitHub, and push an updated
tag. Once the release has successfully appeared on PyPI, it cannot be changed; if you spot a problem in a published
package, you’ll need to tag a completely new release.

2.3 Background

Want to know more about the Rubicon project, it’s history, community, and plans for the future? That’s what you’ll
find here!

2.3.1 Why “Rubicon”?

So. . . why the name Rubicon?

The Rubicon is a river in Italy. It was of importance in ancient times as the border of Rome. The Roman Army was
prohibited from crossing this border, as that would be considered a hostile act against the Roman Senate.

In 54 BC, Julius Caesar marched the Roman Army across the Rubicon, signaling his intention to overthrow the Roman
Senate. As he did so, legend says he uttered the words “Alea Iacta Est” - The die is cast. This action led to Julius being
crowned as Emperor of Rome, and the start of the Roman Empire.

Of course, in order to cross any river, you need to use a bridge.

This project provides a bridge between the open world of the Python ecosystem, and the walled garden of Apple’s
Objective-C ecosystem.

34 Chapter 2. Community

https://readthedocs.org/projects/rubicon-objc/versions/
https://github.com/beeware/rubicon-objc/actions?query=workflow%3A%22Upload+Python+Package%22
https://pypi.org/project/rubicon-objc/

Rubicon Documentation, Release 0.4.9

2.3.2 The Rubicon Objective-C Developer and User community

Rubicon Objective-C is part of the BeeWare suite. You can talk to the community through:

• @beeware@fosstodon.org

• Discord

Code of Conduct

The BeeWare community has a strict Code of Conduct. All users and developers are expected to adhere to this code.

If you have any concerns about this code of conduct, or you wish to report a violation of this code, please contact the
project founder Russell Keith-Magee.

Contributing

If you experience problems with Rubicon, log them on GitHub. If you want to contribute code, please fork the code
and submit a pull request.

2.3.3 Success Stories

Want to see examples of Rubicon in use? Here’s some:

• Travel Tips is an app in the iOS App Store that uses Rubicon to access the iOS UIKit libraries.

2.3.4 Release History

2.3.5 0.4.9 (2024-05-03)

Features

• Objective-C methods with repeated argument names can now be called by using a __ suffix in the Python keyword
argument to provide a unique name. (#148)

• The error message has been improved when an Objective-C selector matching the provided arguments cannot be
found. (#461)

Bugfixes

• The handling of structure and union return types was updated to be compatible with changes to ctypes introduced
in Python 3.13.0a6. (#444)

2.3. Background 35

https://beeware.org
https://fosstodon.org/@beeware
https://beeware.org/bee/chat/
https://beeware.org/contributing/index.html
mailto:russell@keith-magee.com
https://github.com/beeware/rubicon-objc/issues
https://github.com/beeware/rubicon-objc
https://github.com/beeware/rubicon-objc/pulls
https://apps.apple.com/au/app/travel-tips/id1336372310

Rubicon Documentation, Release 0.4.9

Backward Incompatible Changes

• The order of keyword arguments used when invoking methods must now match the order they are defined in the
Objective-C API. Previously arguments could be in any order. (#453)

Documentation

• The README badges were updated to display correctly on GitHub. (#463)

Misc

• #440, #441, #442, #443, #447, #448, #449, #450, #452, #454, #455, #456, #457, #458, #459, #460

2.3.6 0.4.8 (2024-04-03)

Features

• Name clashes caused by re-registering Objective C classes and protocols can now be automatically avoided by
marking the class with auto_rename. (#181)

• Apple Silicon is now formally tested by Rubicon’s continuous integration configuration. (#374)

• Support for Python 3.13 was added. (#374)

• The __repr__ output for ObjCBoundMethod, ObjCClass, ObjCInstance, ObjCMethod,
ObjCPartialMethod, and ObjCProtocol were simplified. (#432)

Bugfixes

• The __all__ definition for rubicon.objc was corrected to use strings, rather than symbols. (#401)

Documentation

• The documentation contribution guide was updated to use a more authoritative reStructuredText reference.
(#427)

Misc

• #381, #382, #383, #384, #385, #386, #387, #388, #389, #390, #391, #392, #393, #395, #396, #397, #398, #399,
#400, #402, #403, #404, #405, #407, #408, #409, #410, #411, #412, #413, #414, #415, #416, #417, #418, #420,
#421, #422, #423, #424, #425, #426, #429, #430, #431, #433, #434, #435, #437, #438

36 Chapter 2. Community

Rubicon Documentation, Release 0.4.9

2.3.7 0.4.7 (2023-10-19)

Features

• The __repr__ and __str__ implementations for NSPoint, CGPoint, NSRect, CGRect, NSSize, CGSize,
NSRange, CFRange, NSEdgeInsets and UIEdgeInsets have been improved. (#222)

• objc_id and objc_block are now exposed as part of the rubicon.objc namespace, rather than requiring an
import from rubicon.objc.runtime. (#357)

Bugfixes

• References to blocks obtained from an Objective C API can now be invoked on M1 hardware. (#225)

• Rubicon is now compatible with PEP563 deferred annotations (from __future__ import annotations).
(#308)

• iOS now uses a full NSRunLoop, rather than a CFRunLoop. (#317)

Backward Incompatible Changes

• Support for Python 3.7 was dropped. (#334)

Documentation

• All code blocks were updated to add a button to copy the relevant contents on to the user’s clipboard. (#300)

Misc

• #295, #296, #297, #298, #299, #301, #302, #303, #305, #306, #307, #310, #311, #312, #314, #315, #319, #320,
#321, #326, #327, #328, #329, #330, #331, #332, #335, #336, #337, #338, #341, #342, #343, #344, #345, #346,
#348, #349, #350, #351, #353, #354, #355, #356, #358, #359, #360, #361, #362, #363, #364, #365, #366, #367,
#368, #369, #370, #371, #372, #373, #375, #376, #377, #378, #379, #380

2.3.8 0.4.6 (2023-04-14)

Bugfixes

• The error message returned when a selector has the wrong type has been improved. (#271)

• Rubicon now uses an implicit namespace package, instead of relying on the deprecated pkg_resources API.
(#292)

2.3. Background 37

https://github.com/beeware/rubicon-objc/pulls/222
https://github.com/beeware/rubicon-objc/pulls/357
https://github.com/beeware/rubicon-objc/issues/225
https://github.com/beeware/rubicon-objc/issues/308
https://github.com/beeware/rubicon-objc/issues/317
https://github.com/beeware/rubicon-objc/pulls/334
https://github.com/beeware/rubicon-objc/pull/300
https://github.com/beeware/rubicon-objc/issues/271
https://github.com/beeware/rubicon-objc/issues/292

Rubicon Documentation, Release 0.4.9

Misc

• #267, #268, #269, #270, #273, #274, #275, #276, #277, #278, #279, #280, #281, #282, #283, #284, #285, #286,
#287, #288, #289, #290, #291, #294

2.3.9 0.4.5 (2023-02-03)

Bugfixes

• Classes that undergo a class name change between alloc() and init() (e.g., NSWindow becomes
NSKVONotifying_Window) no longer trigger instance cache eviction logic. (#258)

Misc

• #259, #260, #262, #263, #264, #265, #266

2.3.10 0.4.5rc1 (2023-01-25)

Features

• Support for Python 3.6 was dropped. (#255)

Misc

• #254

2.3.11 0.4.4 (2023-01-23)

This version was yanked from PyPI because of an incompatibility with Toga-iOS 0.3.0dev39, which was the published
Toga release at the time.

Bugfixes

• Background threads will no longer lock up on iOS when an asyncio event loop is in use. (#228)

• The ObjCInstance cache no longer returns a stale wrapper objects if a memory address is re-used by the Ob-
jective C runtime. (#249)

• It is now safe to open an asyncio event loop on a secondary thread. Previously this would work, but would
intermittently fail with a segfault when then loop was closed. (#250)

• A potential race condition that would lead to duplicated creation on ObjCInstance wrapper objects has been
resolved. (#251)

• A race condition associated with populating the ObjCClass method/property cache has been resolved. (#252)

38 Chapter 2. Community

https://github.com/beeware/rubicon-objc/pull/258
https://github.com/beeware/rubicon-objc/pull/255
https://github.com/beeware/rubicon-objc/issues/228
https://github.com/beeware/rubicon-objc/issues/249
https://github.com/beeware/rubicon-objc/issues/250
https://github.com/beeware/rubicon-objc/issues/251
https://github.com/beeware/rubicon-objc/issues/252

Rubicon Documentation, Release 0.4.9

Misc

• #225, #237, #240, #241, #242, #243, #244, #245, #247, #248, #253

2.3.12 0.4.3 (2022-12-05)

Features

• Support for Python 3.11 has been added. (#224)

• Support for Python 3.12 has been added. (#231)

Bugfixes

• Enforce usage of argtypes when calling send_super. (#220)

• The check identifying the architecture on which Rubicon is running has been corrected for x86_64 simulators
using a recent Python-Apple-support releases. (#235)

Misc

• #227, #228, #229, #232, #233, #234

0.4.2 (2021-11-14)

Features

• Added autoreleasepool context manager to mimic Objective-C @autoreleasepool blocks. (#213)

• Allow storing Python objects in Objective-C properties declared with @objc_property. (#214)

• Added support for Python 3.10. (#218)

Bugfixes

• Raise TypeError when trying to declare a weak property of a non-object type. (#215)

• Corrected handling of methods when a class overrides a method defined in a grandparent. (#216)

0.4.1 (2021-07-25)

Features

• Added official support for Python 3.9. (#193)

• Added official support for macOS 11 (Big Sur). (#195)

• Autorelease Objective-C instances when the corresponding Python instance is destroyed. (#200)

• Improved memory management when a Python instance is assigned to a new ObjCInstance attribute. (#209)

• Added support to declare weak properties on custom Objective-C classes. (#210)

2.3. Background 39

https://github.com/beeware/rubicon-objc/pull/224
https://github.com/beeware/rubicon-objc/pull/231
https://github.com/beeware/rubicon-objc/pull/220
https://github.com/beeware/rubicon-objc/issues/235
https://github.com/beeware/rubicon-objc/pull/213
https://github.com/beeware/rubicon-objc/pull/214
https://github.com/beeware/rubicon-objc/pull/218
https://github.com/beeware/rubicon-objc/pull/215
https://github.com/beeware/rubicon-objc/issues/216
https://github.com/beeware/rubicon-objc/pull/193
https://github.com/beeware/rubicon-objc/pull/195
https://github.com/beeware/rubicon-objc/issues/200
https://github.com/beeware/rubicon-objc/pull/209
https://github.com/beeware/rubicon-objc/issues/210

Rubicon Documentation, Release 0.4.9

Bugfixes

• Fixed incorrect behavior of Block when trying to create a block with no arguments and using explicit types.
This previously caused an incorrect exception about missing argument types; now a no-arg block is created as
expected. (#153)

• Fixed handling of type annotations when passing a bound Python method into Block . (#153)

• A cooperative entry point for starting event loop has been added. This corrects a problem seen when using Python
3.8 on iOS. (#182)

• Improved performance of Objective-C method calls and ObjCInstance creation in many cases. (#183)

• Fix calling of signal handlers added to the asyncio loop with CFRunLoop integration. (#202)

• Allow restarting a stopped event loop. (#205)

Deprecations and Removals

• Removed automatic conversion of Objective-C numbers (NSNumber and NSDecimalNumber) to Python num-
bers when received from Objective-C (i.e. returned from an Objective-C method or property or passed into
an Objective-C method implemented in Python). This automatic conversion significantly slowed down every
Objective-C method call that returns an object, even though the conversion doesn’t apply to most method calls.
If you have code that receives an Objective-C number and needs to use it as a Python number, please convert it
explicitly using py_from_ns() or an appropriate Objective-C method.

As a side effect, NSNumber and NSDecimalNumber values stored in Objective-C collections (NSArray,
NSDictionary) are also no longer automatically unwrapped when retrieved from the collection, even when using
Python syntax to access the collection. For example, if arr is a NSArray of integer NSNumber, arr[0] now re-
turns an Objective-C NSNumber and not a Python int as before. If you need the contents of an Objective-C collec-
tion as Python values, you can use py_from_ns() to convert either single values (e. g. py_from_ns(arr[0]))
or the entire collection (e. g. py_from_ns(arr)). (#183)

• Removed macOS 10.12 through 10.14 from our automatic test matrix, due to pricing changes in one of our
CI services (Travis CI). OS X 10.11 is still included in the test matrix for now, but will probably be removed
relatively soon. Automatic tests on macOS 10.15 and 11.0 are unaffected as they run on a different CI service
(GitHub Actions).

Rubicon will continue to support macOS 10.14 and earlier on a best-effort basis, even though compatibility is no
longer tested automatically. If you encounter any bugs or other problems with Rubicon on these older macOS
versions, please report them! (#197)

Misc

• #185, #189, #194, #196, #208

40 Chapter 2. Community

https://github.com/beeware/rubicon-objc/issues/153
https://github.com/beeware/rubicon-objc/issues/153
https://github.com/beeware/rubicon-objc/pull/182
https://github.com/beeware/rubicon-objc/issues/183
https://github.com/beeware/rubicon-objc/issues/202
https://github.com/beeware/rubicon-objc/pull/205
https://github.com/beeware/rubicon-objc/issues/183
https://github.com/beeware/rubicon-objc/issues/197

Rubicon Documentation, Release 0.4.9

0.4.0 (2020-07-04)

Features

• Added macOS 10.15 (Catalina) to the test matrix. (#145)

• Added PEP 517 and PEP 518 build system metadata to pyproject.toml. (#156)

• Added official support for Python 3.8. (#162)

• Added a varargs keyword argument to send_message() to allow calling variadic methods more safely. (#174)

• Changed ObjCMethod to call methods using send_message() instead of calling IMPs directly. This is mainly an
internal change and should not affect most existing code, although it may improve compatibility with Objective-C
code that makes heavy use of runtime reflection and method manipulation (such as swizzling). (#177)

Bugfixes

• Fixed Objective-C method calls in “flat” syntax accepting more arguments than the method has. The extra
arguments were previously silently ignored. An exception is now raised if too many arguments are passed.
(#123)

• Fixed ObjCInstance.__str__ throwing an exception if the object’s Objective-C description is nil. (#125)

• Corrected a slow memory leak caused every time an asyncio timed event handler triggered. (#146)

• Fixed various minor issues in the build and packaging metadata. (#156)

• Removed unit test that attempted to pass a struct with bit fields into a C function by value. Although this has
worked in the past on x86 and x86_64, ctypes never officially supported this, and started generating an error in
Python 3.7.6 and 3.8.1 (see bpo-39295). (#157)

• Corrected the invocation of NSApplication.terminate() when the CocoaLifecycle is ended. (#170)

• Fixed send_message() not accepting SEL objects for the selector parameter. The documentation stated that
this is allowed, but actually doing so caused a type error. (#177)

Improved Documentation

• Added detailed reference documentation for all public APIs of rubicon.objc. (#118)

• Added a how-to guide for calling regular C functions using ctypes and rubicon.objc. (#147)

Deprecations and Removals

• Removed the i386 architecture from the test matrix. It is still supported on a best-effort basis, but compatibility
is not tested automatically. (#139)

• Tightened the API of send_message(), removing some previously allowed shortcuts and features that were
rarely used, or likely to be used by accident in an unsafe way.

Note: In most cases, Rubicon’s high-level method call syntax provided by ObjCInstance can be used instead
of send_message(). This syntax is almost always more convenient to use, more readable and less error-prone.
send_message() should only be used in cases not supported by the high-level syntax.

2.3. Background 41

https://github.com/beeware/rubicon-objc/pull/145
https://peps.python.org/pep-0517/
https://peps.python.org/pep-0518/
https://github.com/beeware/rubicon-objc/pull/156
https://github.com/beeware/rubicon-objc/pull/162
https://github.com/beeware/rubicon-objc/pull/174
https://github.com/beeware/rubicon-objc/pull/177
https://github.com/beeware/rubicon-objc/issues/123
https://github.com/beeware/rubicon-objc/issues/125
https://github.com/beeware/rubicon-objc/issues/146
https://github.com/beeware/rubicon-objc/pull/156
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://bugs.python.org/issue39295
https://github.com/beeware/rubicon-objc/pull/157
https://github.com/beeware/rubicon-objc/issues/170
https://github.com/beeware/rubicon-objc/pull/177
https://github.com/beeware/rubicon-objc/pull/118
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://github.com/beeware/rubicon-objc/pull/147
https://github.com/beeware/rubicon-objc/pull/139

Rubicon Documentation, Release 0.4.9

• Disallowed passing class names as str/bytes as the receiver argument of send_message(). If you need to
send a message to a class object (i. e. call a class method), use ObjCClass or get_class() to look up the class,
and pass the resulting ObjCClass or Class object as the receiver.

• Disallowed passing c_void_p objects as the receiver argument of send_message(). The receiver argu-
ment now has to be of type objc_id , or one of its subclasses (such as Class), or one of its high-level equivalents
(such as ObjCInstance). All Objective-C objects returned by Rubicon’s high-level and low-level APIs have one
of these types. If you need to send a message to an object pointer stored as c_void_p, cast() it to objc_id
first.

• Removed default values for send_message()’s restype and argtypes keyword arguments. Every
send_message() call now needs to have its return and argument types set explicitly. This ensures that all
arguments and the return value are converted correctly between (Objective-)C and Python.

• Disallowed passing more argument values than there are argument types in argtypes. This was previously
allowed to support calling variadic methods - any arguments beyond the types set in argtypes would be passed
as varargs. However, this feature was easy to misuse by accident, as it allowed passing extra arguments to any
method, even though most Objective-C methods are not variadic. Extra arguments passed this way were silently
ignored without causing an error or a crash.

To prevent accidentally passing too many arguments like this, the number of arguments now has to exactly match
the number of argtypes. Variadic methods can still be called, but the varargs now need to be passed as a list
into the separate varargs keyword argument. (#174)

• Removed the rubicon.objc.core_foundation module. This was an internal module with few remaining
contents and should not have any external uses. If you need to call Core Foundation functions in your code, please
load the framework yourself using load_library('CoreFoundation') and define the types and functions that
you need. (#175)

• Removed the ObjCMethod class from the public API, as there was no good way to use it from external code.
(#177)

Misc

• #143, #145, #155, #158, #159, #164, #173, #178, #179

0.3.1

• Added a workaround for bpo-36880, which caused a “deallocating None” crash when returning structs from
methods very often.

• Added macOS High Sierra (10.13) and macOS Mojave (10.14) to the test matrix.

• Renamed the rubicon.objc.async module to rubicon.objc.eventloop to avoid conflicts with the Python
3.6 async keyword.

• Removed support for Python 3.4.

• Removed OS X Yosemite (10.10) from the test matrix. This version is (and older ones are) still supported on a
best-effort basis, but compatibility is not tested automatically.

42 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/3/library/ctypes.html#ctypes.cast
https://github.com/beeware/rubicon-objc/pull/174
https://github.com/beeware/rubicon-objc/pull/175
https://github.com/beeware/rubicon-objc/pull/177
https://bugs.python.org/issue36880

Rubicon Documentation, Release 0.4.9

0.3.0

• Added Pythonic operators and methods on NSString objects, similar to those for NSArray and NSDictionary.

• Removed automatic conversion of NSString objects to str when returned from Objective-C methods. This
feature made it difficult to call Objective-C methods on NSString objects, because there was no easy way to
prevent the automatic conversion.

In most cases, this change will not affect existing code, because NSString objects now support operations similar
to str. If an actual str object is required, the NSString object can be wrapped in a str call to convert it.

• Added support for objc_propertys with non-object types.

• Added public get_ivar and set_ivar functions for manipulating ivars.

• Changed the implementation of objc_property to use ivars instead of Python attributes for storage. This
fixes name conflicts in some situations.

• Added the load_library() function for loading CDLLs by their name instead of their full path.

• Split the high-level Rubicon API (ObjCInstance, ObjCClass, etc.) out of rubicon.objc.runtime into a
separate rubicon.objc.api module. The runtime module now only contains low-level runtime interfaces
like libobjc.

This is mostly an internal change, existing code will not be affected unless it imports names directly from
rubicon.objc.runtime.

• Moved c_ptrdiff_t from rubicon.objc.runtime to rubicon.objc.types.

• Removed some rarely used names (IMP, Class, Ivar, Method , get_ivar(), objc_id , objc_property_t,
set_ivar()) from the main rubicon.objc namespace.

If needed, these names can be imported explicitly from the rubicon.objc.runtime module.

• Fixed objc_property setters on non-macOS platforms. (cculianu)

• Fixed various bugs in the collection ObjCInstance subclasses:

• Fixed getting/setting/deleting items or slices with indices lower than -len(obj). Previously this crashed Python,
now an IndexError is raised.

• Fixed slices with step size 0. Previously they were ignored and 1 was incorrectly used as the step size, now an
IndexError is raised.

• Fixed equality checks between Objective-C arrays/dictionaries and non-sequence/mapping objects. Previously
this incorrectly raised a TypeError, now it returns False.

• Fixed equality checks between Objective-C arrays and sequences of different lengths. Previously this incorrectly
returned True if the shorter sequence was a prefix of the longer one, now False is returned.

• Fixed calling popitem on an empty Objective-C dictionary. Previously this crashed Python, now a KeyError
is raised.

• Fixed calling update with both a mapping and keyword arguments on an Objective-C dictionary. Previously the
kwargs were incorrectly ignored if a mapping was given, now both are respected.

• Fixed calling methods using kwarg syntax if a superclass and subclass define methods with the same pre-
fix, but different names. For example, if a superclass had a method initWithFoo:bar: and the subclass
initWithFoo:spam:, the former could not be called on instances of the subclass.

• Fixed the internal ctypes_patch module so it no longer depends on a non-public CPython function.

2.3. Background 43

https://docs.python.org/3/library/ctypes.html#ctypes.CDLL

Rubicon Documentation, Release 0.4.9

0.2.10

• Rewrote almost all Core Foundation-based functions to use Foundation instead.

– The functions from_value and NSDecimalNumber.from_decimal have been removed and replaced by
ns_from_py.

– The function at is now an alias for ns_from_py.

– The function is_str has been removed. is_str(obj) calls should be replaced with isinstance(obj,
NSString).

– The functions to_list, to_number, to_set, to_str, and to_value have been removed and replaced
by py_from_ns.

• Fixed declare_property not applying to subclasses of the class it was called on.

• Fixed repr of ObjCBoundMethod when the wrapped method is not an ObjCMethod.

• Fixed the encodings of NSPoint, NSSize, and NSRect on 32-bit systems.

• Renamed the async support package to eventloop to avoid a Python 3.5+ keyword clash.

0.2.9

• Improved handling of Boolean types.

• Added support for using primitives as object values (e.g, as the key/value in an NSDictonary).

• Added support for passing Python lists as Objective-C NSArray arguments, and Python dictionaries as Objective-
C NSDictionary arguments.

• Corrected support to storing strings and other objects as properties on Python-defined Objective-C classes.

• Added support for creating Objective-C blocks from Python callables. (ojii)

• Added support for returning compound values (structures and unions) from Objective-C methods defined in
Python.

• Added support for creating, extending and conforming to Objective-C protocols.

• Added an objc_const convenience function to look up global Objective-C object constants in a DLL.

• Added support for registering custom ObjCInstance subclasses to be used to represent Objective-C objects of
specific classes.

• Added support for integrating NSApplication and UIApplication event loops with Python’s asyncio event
loop.

0.2.8

• Added support for using native Python sequence/mapping syntax with NSArray and NSDictionary. (jeamland)

• Added support for calling Objective-C blocks in Python. (ojii)

• Added functions for declaring custom conversions between Objective-C type encodings and ctypes types.

• Added functions for splitting and decoding Objective-C method signature encodings.

• Added automatic conversion of Python sequences to C arrays or structures in method arguments.

• Extended the Objective-C type encoding decoder to support block types, bit fields (in structures), typed object
pointers, and arbitrary qualifiers. If unknown pointer, array, struct or union types are encountered, they are
created and registered on the fly.

44 Chapter 2. Community

Rubicon Documentation, Release 0.4.9

• Changed the PyObjectEncoding to match the real definition of PyObject *.

• Fixed the declaration of unichar (was previously c_wchar, is now c_ushort).

• Removed the get_selector function. Use the SEL constructor instead.

• Removed some runtime function declarations that are deprecated or unlikely to be useful.

• Removed the encoding constants. Use encoding_for_ctype to get the encoding of a type.

0.2.7

• (#40) Added the ability to explicitly declare no-attribute methods as properties. This is to enable a workaround
when Apple introduces read-only properties as a way to access these methods.

0.2.6

• Added a more compact syntax for calling Objective-C methods, using Python keyword arguments. (The old
syntax is still fully supported and will not be removed; certain method names even require the old syntax.)

• Added a superclass property to ObjCClass.

0.2.5

• Added official support for Python 3.6.

• Added keyword arguments to disable argument and/or return value conversion when calling an Objective-C
method.

• Added support for (NS/UI) EdgeInsets structs. (Longhanks)

• Improved str of Objective-C classes and objects to return the debugDescription, or for NSStrings, the string
value.

• Changed ObjCClass to extend ObjCInstance (in addition to type), and added an ObjCMetaClass class to
represent metaclasses.

• Fixed some issues on non-x86_64 architectures (i386, ARM32, ARM64).

• Fixed example code in README. (Dayof)

• Removed the last of the Python 2 compatibility code.

0.2.4

• Added objc_property function for adding properties to custom Objective-C subclasses. (Longhanks)

2.3. Background 45

Rubicon Documentation, Release 0.4.9

0.2.3

• Removed most Python 2 compatibility code.

0.2.2

• Dropped support for Python 3.3.

• Added conversion of Python enum.Enum objects to their underlying values when passed to an Objective-C
method.

• Added syntax highlighting to example code in README. (stsievert)

• Fixed the setup.py shebang line. (uranusjr)

0.2.1

• Fixed setting of ObjCClass/ObjCInstance attributes that are not Objective-C properties.

0.2.0

• First beta release.

• Dropped support for Python 2. Python 3 is now required, the minimum tested version is Python 3.3.

• Added error detection when attempting to create an Objective-C class with a name that is already in use.

• Added automatic conversion between Python decimal.Decimal and Objective-C NSDecimal in method argu-
ments and return values.

• Added PyPy to the list of test platforms.

• When subclassing Objective-C classes, the return and argument types of methods are now specified using Python
type annotation syntax and ctypes types.

• Improved property support.

0.1.3

• Fixed some issues on ARM64 (iOS 64-bit).

0.1.2

• Fixed NSString conversion in a few situations.

• Fixed some issues on iOS and 32-bit platforms.

46 Chapter 2. Community

Rubicon Documentation, Release 0.4.9

0.1.1

• Objective-C classes can now be subclassed using Python class syntax, by using an ObjCClass as the superclass.

• Removed ObjCSubclass, which is made obsolete by the new subclassing syntax.

0.1.0

• Initial alpha release.

• Objective-C classes and instances can be accessed via ObjCClass and ObjCInstance.

• Methods can be called on classes and instances with Python method call syntax.

• Properties can be read and written with Python attribute syntax.

• Method return and argument types are read automatically from the method type encoding.

• A small number of commonly used structs are supported as return and argument types.

• Python strings are automatically converted to and from NSString when passed to or returned from a method.

• Subclasses of Objective-C classes can be created with ObjCSubclass.

2.3.13 Road map

2.4 Reference

2.4.1 rubicon.objc— The main Rubicon module

This is the main namespace of Rubicon-ObjC. Rubicon is structured into multiple submodules of rubicon.objc, and
the most commonly used attributes from these submodules are exported via the rubicon.objc module. This means
that most users only need to import and use the main rubicon.objc module; the individual submodules only need to
be used for attributes that are not also available on rubicon.objc.

Exported Attributes

This is a full list of all attributes exported on the rubicon.objc module. For detailed documentation on these at-
tributes, click the links below to visit the relevant sections of the submodules’ documentation.

From rubicon.objc.api

• Block
• NSArray
• NSDictionary
• NSMutableArray
• NSMutableDictionary
• NSObject
• NSObjectProtocol
• ObjCBlock
• ObjCClass
• ObjCInstance
• ObjCMetaClass

• ObjCProtocol
• at()
• ns_from_py()
• objc_classmethod()
• objc_const()
• objc_ivar()
• objc_method()
• objc_property()
• objc_rawmethod()
• py_from_ns()

2.4. Reference 47

Rubicon Documentation, Release 0.4.9

From rubicon.objc.runtime

• SEL
• send_message()

• send_super()

From rubicon.objc.types

• CFIndex
• CFRange
• CGFloat
• CGGlyph
• CGPoint
• CGPointMake()
• CGRect
• CGRectMake()
• CGSize
• CGSizeMake()
• NSEdgeInsets
• NSEdgeInsetsMake()
• NSInteger
• NSMakePoint()

• NSMakeRect()
• NSMakeSize()
• NSPoint
• NSRange
• NSRect
• NSSize
• NSTimeInterval
• NSUInteger
• NSZeroPoint
• UIEdgeInsets
• UIEdgeInsetsMake()
• UIEdgeInsetsZero
• UniChar
• unichar

2.4.2 rubicon.objc.api— The high-level Rubicon API

This module contains Rubicon’s main high-level APIs, which allow easy interaction with Objective-C classes and
objects using Pythonic syntax.

Nearly all attributes of this module are also available on the main rubicon.objc module, and if possible that module
should be used instead of importing rubicon.objc.api directly.

Objective-C objects

class rubicon.objc.api.ObjCInstance(ptr)
Python wrapper for an Objective-C instance.

The constructor accepts an objc_id or anything that can be cast to one, such as a c_void_p, or an existing
ObjCInstance.

ObjCInstance objects are cached — this means that for every Objective-C object there can be at most one
ObjCInstance object at any time. Rubicon will automatically create new ObjCInstances or return existing
ones as needed.

The returned object’s Python class is not always exactly ObjCInstance. For example, if the passed pointer refers
to a class or a metaclass, an instance of ObjCClass or ObjCMetaClass is returned as appropriate. Additional
custom ObjCInstance subclasses may be defined and registered using register_type_for_objcclass().
Creating an ObjCInstance from a nil pointer returns None.

Rubicon currently does not perform any automatic memory management on the Objective-C object wrapped in
an ObjCInstance. It is the user’s responsibility to retain and release wrapped objects as needed, like in
Objective-C code without automatic reference counting.

ptr

48 Chapter 2. Community

https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p

Rubicon Documentation, Release 0.4.9

_as_parameter_

The wrapped object pointer as an objc_id . This attribute is also available as _as_parameter_ to allow
ObjCInstances to be passed into ctypes functions.

objc_class

The Objective-C object’s class, as an ObjCClass.

__str__()

Get a human-readable representation of self.

By default, self.description converted to a Python string is returned. If self.description is nil,
self.debugDescription converted to a Python is returned instead. If that is also nil, repr(self) is
returned as a fallback.

__repr__()

Get a debugging representation of self, which includes the Objective-C object’s class and
debugDescription.

__getattr__(name)
Allows accessing Objective-C properties and methods using Python attribute syntax.

If self has a Python attribute with the given name, its value is returned.

If there is an Objective-C property with the given name, its value is returned using its getter method. An
attribute is considered a property if any of the following are true:

• A property with the name is present on the class (i.e. declared using @property in the source code)

• There is both a getter and setter method for the name

• The name has been declared as a property using ObjCClass.declare_property()

Otherwise, a method matching the given name is looked up. ObjCInstance understands two syntaxes for
calling Objective-C methods:

• “Flat” syntax: the Objective-C method name is spelled out in the attribute name, with all
colons replaced with underscores, and all arguments are passed as positional arguments. For ex-
ample, the Objective-C method call [self initWithWidth:w height:h] translates to self.
initWithWidth_height_(w, h).

• “Interleaved” syntax: the Objective-C method name is split up between the attribute name and the
keyword arguments passed to the returned method. For example, the Objective-C method call [self
initWithRed:r green:g blue:b] translates to self.initWithRed(r, green=g, blue=b).

The “interleaved” syntax is usually preferred, since it looks more similar to normal Objective-C syn-
tax. However, the “flat” syntax is also fully supported. If two arguments have the same name (e.g.
performSelector:withObject:withObject:), you can use __ in the keywords to disambiguate (e.g.,
performSelector(..., withObject__1=..., withObject__2=...). Any content after and in-
cluding the __ in an argument will be ignored.

__setattr__(name, value)
Allows modifying Objective-C properties using Python syntax.

If self has a Python attribute with the given name, it is set. Otherwise, the name should refer to an
Objective-C property, whose setter method is called with value.

rubicon.objc.api.objc_const(dll, name)
Create an ObjCInstance from a global pointer variable in a CDLL.

This function is most commonly used to access constant object pointers defined by a library/framework, such as
NSCocoaErrorDomain.

2.4. Reference 49

https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/ctypes.html#ctypes.CDLL
https://developer.apple.com/documentation/foundation/nscocoaerrordomain?language=objc

Rubicon Documentation, Release 0.4.9

Objective-C classes

class rubicon.objc.api.ObjCClass(name_or_ptr[, bases, attrs[, protocols=(), auto_rename=None]])
Python wrapper for an Objective-C class.

ObjCClass is a subclass of ObjCInstance and supports the same syntaxes for calling methods and accessing
properties.

The constructor accepts either the name of an Objective-C class to look up (as str or bytes), or a pointer to an
existing class object (in any form accepted by ObjCInstance).

If given a pointer, it must refer to an Objective-C class; pointers to other objects are not accepted. (Use
ObjCInstance to wrap a pointer that might also refer to other kinds of objects.) If the pointer refers to a meta-
class, an instance of ObjCMetaClass is returned instead. Creating an ObjCClass from a Nil pointer returns
None.

ObjCClass can also be called like type, with three arguments (name, bases list, namespace mapping). This
form is called implicitly by Python’s class syntax, and is used to create a new Objective-C class from Python
(see Creating custom Objective-C classes and protocols). The bases list must contain exactly one ObjCClass
to be extended by the new class. An optional protocols keyword argument is also accepted, which must be a
sequence of ObjCProtocols for the new class to adopt.

If the name of the class has already registered with the Objective C runtime, the auto_rename option can be
used to ensure that the Objective C name for the new class will be unique. A numeric suffix will be appended to
the Objective C name to ensure uniqueness (for example, MyClass will be renamed to MyClass_2, MyClass_3
etc until a unique name is found). By default, classes will not be renamed, unless ObjCClass.auto_rename is
set at the class level.

name

The name of this class, as a str.

superclass

The superclass of this class, or None if this is a root class (such as NSObject).

protocols

The protocols adopted by this class.

auto_rename = False

A bool value describing whether a defined class should be renamed automatically if a class with the same
name already exists in the Objective C runtime.

declare_property(name)
Declare the instance method name to be a property getter.

This causes the attribute named name on instances of this class to be treated as a property rather than
a method — accessing it returns the property’s value, without requiring an explicit method call. See
ObjCInstance.__getattr__ for a full description of how attribute access behaves for properties.

Most properties do not need to be declared explicitly using this method, as they are detected automatically
by ObjCInstance.__getattr__. This method only needs to be used for properties that are read-only and
don’t have a @property declaration in the source code, because Rubicon cannot tell such properties apart
from normal zero-argument methods.

Note: In the standard Apple SDKs, some properties are introduced as regular methods in one sys-
tem version, and then declared as properties in a later system version. For example, the description
method/property of NSObject was declared as a regular method up to OS X 10.9, but changed to a prop-
erty as of OS X 10.10.

50 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://github.com/phracker/MacOSX-SDKs/blob/9fc3ed0ad0345950ac25c28695b0427846eea966/MacOSX10.9.sdk/usr/include/objc/NSObject.h#L40
https://github.com/phracker/MacOSX-SDKs/blob/9fc3ed0ad0345950ac25c28695b0427846eea966/MacOSX10.10.sdk/usr/include/objc/NSObject.h#L43

Rubicon Documentation, Release 0.4.9

Such properties cause compatibility issues when accessed from Rubicon: obj.description() works
on 10.9 but is a TypeError on 10.10, whereas obj.description works on 10.10 but returns a
method object on 10.9. To solve this issue, the property can be declared explicitly using NSObject.
declare_property('description'), so that it can always be accessed using obj.description.

declare_class_property(name)
Declare the class method name to be a property getter.

This is equivalent to self.objc_class.declare_property(name).

__instancecheck__(instance)
Check whether the given object is an instance of this class.

If the given object is not an Objective-C object, False is returned.

This method allows using ObjCClasses as the second argument of isinstance(): isinstance(obj,
NSString) is equivalent to obj.isKindOfClass(NSString).

__subclasscheck__(subclass)
Check whether the given class is a subclass of this class.

If the given object is not an Objective-C class, TypeError is raised.

This method allows using ObjCClasses as the second argument of issubclass(): issubclass(cls,
NSValue) is equivalent to obj.isSubclassOfClass(NSValue).

class rubicon.objc.api.ObjCMetaClass(name_or_ptr)
Python wrapper for an Objective-C metaclass.

ObjCMetaClass is a subclass of ObjCClass and supports almost exactly the same operations and methods.
However, there is usually no need to look up a metaclass manually. The main reason why ObjCMetaClass
is a separate class is to differentiate it from ObjCClass in the repr(). (Otherwise there would be no way to
tell classes and metaclasses apart, since metaclasses are also classes, and have exactly the same name as their
corresponding class.)

The constructor accepts either the name of an Objective-C metaclass to look up (as str or bytes), or a pointer
to an existing metaclass object (in any form accepted by ObjCInstance).

If given a pointer, it must refer to an Objective-C metaclass; pointers to other objects are not accepted. (Use
ObjCInstance to wrap a pointer that might also refer to other kinds of objects.) Creating an ObjCMetaClass
from a Nil pointer returns None.

Standard Objective-C and Foundation classes

The following classes from the Objective-C runtime and the Foundation framework are provided as ObjCClasses for
convenience. (Other classes not listed here can be looked up by passing a class name to the ObjCClass constructor.)

Note: None of the following classes have a usable Python-style constructor - for example, you cannot call
NSString("hello") to create an Objective-C string from a Python string. To create instances of these classes, you
should use ns_from_py() (also called at()): ns_from_py("hello") returns a NSString instance with the value
hello.

class rubicon.objc.api.NSObject

The NSObject class from <objc/NSObject.h>.

2.4. Reference 51

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#isinstance
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#issubclass
https://docs.python.org/3/library/functions.html#repr
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://developer.apple.com/documentation/objectivec?language=objc
https://developer.apple.com/documentation/foundation?language=objc
https://developer.apple.com/documentation/objectivec/nsobject?language=objc

Rubicon Documentation, Release 0.4.9

Note: See the ObjCInstance documentation for a list of operations that Rubicon supports on all objects.

debugDescription

description

These Objective-C properties have been declared using ObjCClass.declare_property() and can al-
ways be accessed using attribute syntax.

class rubicon.objc.api.Protocol

The Protocol class from <objc/Protocol.h>.

Note: This class has no (non-deprecated) Objective-C methods; protocol objects can only be manipulated using
Objective-C runtime functions. Rubicon automatically wraps all Protocol objects using ObjCProtocol, which
provides an easier interface for working with protocols.

class rubicon.objc.api.NSNumber

The NSNumber class from <Foundation/NSValue.h>.

Note: This class can be converted to and from standard Python primitives (bool, int, float) using
py_from_ns() and ns_from_py().

class rubicon.objc.api.NSDecimalNumber

The NSDecimalNumber class from <Foundation/NSDecimalNumber.h>.

Note: This class can be converted to and from Python decimal.Decimal using py_from_ns() and
ns_from_py().

class rubicon.objc.api.NSString

The NSString class from <Foundation/NSString.h>.

This class also supports all methods that str does.

Note: This class can be converted to and from Python str using py_from_ns() and ns_from_py(). You can
also call str(nsstring) to convert a NSString to str.

NSString objects consist of UTF-16 code units, unlike str, which consists of Unicode code points. All
NSString indices and iteration are based on UTF-16, even when using the Python-style operations/methods.
If indexing or iteration based on code points is required, convert the NSString to str first.

__str__()

Return the value of this NSString as a str.

UTF8String

This Objective-C property has been declared using ObjCClass.declare_property() and can always be
accessed using attribute syntax.

class rubicon.objc.api.NSData

The NSData class from <Foundation/NSData.h>.

52 Chapter 2. Community

https://developer.apple.com/documentation/objectivec/protocol?language=objc
https://developer.apple.com/documentation/foundation/nsnumber?language=objc
https://developer.apple.com/documentation/foundation/nsdecimalnumber?language=objc
https://developer.apple.com/documentation/foundation/nsstring?language=objc
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://developer.apple.com/documentation/foundation/nsdata?language=objc

Rubicon Documentation, Release 0.4.9

Note: This class can be converted to and from Python bytes using py_from_ns() and ns_from_py().

class rubicon.objc.api.NSArray

The NSArray class from <Foundation/NSArray.h>.

Note: This class can be converted to and from Python list using py_from_ns() and ns_from_py().

py_from_ns(nsarray) will recursively convert nsarray’s elements to Python objects, where possible. To
avoid this recursive conversion, use list(nsarray) instead.

ns_from_py(pylist) will recursively convert pylist’s elements to Objective-C. As there is no way to store
Python object references as Objective-C objects yet, this recursive conversion cannot be avoided. If any of
pylist’s elements cannot be converted to Objective-C, an error is raised.

__getitem__(index)
__len__()

__iter__()

__contains__(value)
__eq__(other)
__ne__(other)
index(value)
count(value)
copy()

Python-style sequence interface.

class rubicon.objc.api.NSMutableArray

The NSMutableArray class from <Foundation/NSArray.h>.

Note: This class can be converted to and from Python exactly like its superclass NSArray.

__setitem__(index, value)
__delitem__(index)
append(value)
clear()

extend(values)
insert(index, value)

pop([index=-1])
remove(value)
reverse()

Python-style mutable sequence interface.

class rubicon.objc.api.NSDictionary

The NSDictionary class from <Foundation/NSDictionary.h>.

Note: This class can be converted to and from Python dict using py_from_ns() and ns_from_py().

2.4. Reference 53

https://docs.python.org/3/library/stdtypes.html#bytes
https://developer.apple.com/documentation/foundation/nsarray?language=objc
https://docs.python.org/3/library/stdtypes.html#list
https://developer.apple.com/documentation/foundation/nsmutablearray?language=objc
https://developer.apple.com/documentation/foundation/nsdictionary?language=objc
https://docs.python.org/3/library/stdtypes.html#dict

Rubicon Documentation, Release 0.4.9

py_from_ns(nsdict) will recursively convert nsdict’s keys and values to Python objects, where possi-
ble. To avoid the recursive conversion of the values, use {py_from_ns(k): v for k, v in nsdict.
items()}. The conversion of the keys cannot be avoided, because Python dict keys need to be hashable,
which ObjCInstance is not. If any of the keys convert to a Python object that is not hashable, an error is raised
(regardless of which conversion method you use).

ns_from_py(pydict) will recursively convert pydict’s keys and values to Objective-C. As there is no way to
store Python object references as Objective-C objects yet, this recursive conversion cannot be avoided. If any of
pydict’s keys or values cannot be converted to Objective-C, an error is raised.

__getitem__(key)
__len__()

__iter__()

__contains__(key)
__eq__(other)
__ne__(other)
copy()

get(key[, default=None])
keys()

items()

values()

Python-style mapping interface.

Note: Unlike most Python mappings, NSDictionary’s keys, values, and items methods don’t return
dynamic views of the dictionary’s keys, values, and items.

keys and values return lists that are created each time the methods are called, which can have an effect
on performance and memory usage for large dictionaries. To avoid this, you can cache the return values of
keys and values, or convert the NSDictionary to a Python dict beforehand.

items is currently implemented as a generator, meaning that it returns a single-use iterator. If you need to
iterate over items more than once or perform other operations on it, you should convert it to a Python set
or list first.

class rubicon.objc.api.NSMutableDictionary

The NSMutableDictionary class from <Foundation/NSDictionary.h>.

Note: This class can be converted to and from Python exactly like its superclass NSDictionary.

__setitem__(key, value)
__delitem__(key)
clear()

pop(item[, default])
popitem()

setdefault(key[, default=None])
update([other,]**kwargs)

Python-style mutable mapping interface.

54 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#list
https://developer.apple.com/documentation/foundation/nsmutabledictionary?language=objc

Rubicon Documentation, Release 0.4.9

Objective-C protocols

class rubicon.objc.api.ObjCProtocol(name_or_ptr[, bases, attrs[, auto_rename=None]])
Python wrapper for an Objective-C protocol.

The constructor accepts either the name of an Objective-C protocol to look up (as str or bytes), or a pointer to
an existing protocol object (in any form accepted by ObjCInstance).

If given a pointer, it must refer to an Objective-C protocol; pointers to other objects are not accepted. (Use
ObjCInstance to wrap a pointer that might also refer to other kinds of objects.) Creating an ObjCProtocol
from a nil pointer returns None.

ObjCProtocol can also be called like type, with three arguments (name, bases list, namespace mapping).
This form is called implicitly by Python’s class syntax, and is used to create a new Objective-C protocol from
Python (see Creating custom Objective-C classes and protocols). The bases list can contain any number of
ObjCProtocol objects to be extended by the new protocol.

If the name of the protocol has already registered with the Objective C runtime, the auto_rename option
can be used to ensure that the Objective C name for the new protocol will be unique. A numeric suffix will
be appended to the Objective C name to ensure uniqueness (for example, MyProtocol will be renamed to
MyProtocol_2, MyProtocol_3 etc until a unique name is found). By default, protocols will not be renamed,
unless ObjCProtocol.auto_rename is set at the class level.

name

The name of this protocol, as a str.

protocols

The protocols that this protocol extends.

auto_rename = False

A bool value whether a defined protocol should be renamed automatically if a protocol with the same name
is already exists.

__instancecheck__(instance)
Check whether the given object conforms to this protocol.

If the given object is not an Objective-C object, False is returned.

This method allows using ObjCProtocols as the second argument of isinstance(): isinstance(obj,
NSCopying) is equivalent to obj.conformsToProtocol(NSCopying).

__subclasscheck__(subclass)
Check whether the given class or protocol conforms to this protocol.

If the given object is not an Objective-C class or protocol, TypeError is raised.

This method allows using ObjCProtocols as the second argument of issubclass(): issubclass(cls,
NSCopying) is equivalent to cls.conformsToProtocol(NSCopying), and issubclass(proto,
NSCopying) is equivalent to protocol_conformsToProtocol(proto, NSCopying)).

2.4. Reference 55

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#isinstance
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/functions.html#issubclass

Rubicon Documentation, Release 0.4.9

Standard Objective-C and Foundation protocols

The following protocols from the Objective-C runtime and the Foundation framework are provided as ObjCProtocols
for convenience. (Other protocols not listed here can be looked up by passing a protocol name to the ObjCProtocol
constructor.)

rubicon.objc.api.NSObjectProtocol

The NSObject protocol from <objc/NSObject.h>. The protocol is exported as NSObjectProtocol in Python
because it would otherwise clash with the NSObject class.

Converting objects between Objective-C and Python

rubicon.objc.api.py_from_ns(nsobj)
Convert a Foundation object into an equivalent Python object if possible.

Currently supported types:

• objc_id : Wrapped in an
ObjCInstance and converted as below

• NSString: Converted to str

• NSData: Converted to bytes

• NSDecimalNumber: Converted to decimal.Decimal

• NSDictionary: Converted to dict, with all keys and
values converted recursively

• NSArray: Converted to list, with all elements converted
recursively

• NSNumber: Converted to a bool, int or
float based on the type of its contents

Other objects are returned unmodified as an ObjCInstance.

rubicon.objc.api.ns_from_py(pyobj)
Convert a Python object into an equivalent Foundation object. The returned object is autoreleased.

This function is also available under the name at(), because its functionality is very similar to that of the
Objective-C @ operator and literals.

Currently supported types:

• None, ObjCInstance: Returned as-is

• enum.Enum: Replaced by their value and
converted as below

• str: Converted to NSString

• bytes: Converted to NSData

• decimal.Decimal: Converted to NSDecimalNumber

• dict: Converted to NSDictionary, with all keys and
values converted recursively

• list: Converted to NSArray, with all elements converted
recursively

56 Chapter 2. Community

https://developer.apple.com/documentation/objectivec?language=objc
https://developer.apple.com/documentation/foundation?language=objc
https://developer.apple.com/documentation/objectivec/1418956-nsobject?language=objc
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/enum.html#enum.Enum.value
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/decimal.html#decimal.Decimal
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

Rubicon Documentation, Release 0.4.9

• bool, int, float: Converted to
NSNumber

Other types cause a TypeError.

rubicon.objc.api.at(pyobj)
Alias for ns_from_py().

Creating custom Objective-C classes and protocols

Custom Objective-C classes are defined using Python class syntax, by subclassing an existing ObjCClass object:

class MySubclass(NSObject):
method, property, etc. definitions go here

A custom Objective-C class can only have a single superclass, since Objective-C does not support multiple inheritance.
However, the class can conform to any number of protocols, which are specified by adding the protocols keyword
argument to the base class list:

class MySubclass(NSObject, protocols=[NSCopying, NSMutableCopying]):
method, property, etc. definitions go here

Note: Rubicon requires specifying a superclass when defining a custom Objective-C class. If you don’t need to extend
any specific class, use NSObject as the superclass.

Although Objective-C technically allows defining classes without a base class (so-called root classes), this is almost
never the desired behavior (attempting to do so causes a compiler error by default). In practice, this feature is only
used in the definitions of core Objective-C classes like NSObject. Because of this, Rubicon does not support defining
Objective-C root classes.

Similar syntax is used to define custom Objective-C protocols. Unlike classes, protocols can extend multiple other
protocols:

class MyProtocol(NSCopying, NSMutableCopying):
method, property, etc. definitions go here

A custom protocol might not need to extend any other protocol at all. In this case, we need to explicitly tell Python to
define an ObjCProtocol. Normally Python detects the metaclass automatically by examining the base classes, but in
this case there are none, so we need to specify the metaclass manually.

class MyProtocol(metaclass=ObjCProtocol):
method, property, etc. definitions go here

Defining methods

rubicon.objc.api.objc_method(py_method)
Exposes the decorated method as an Objective-C instance method in a custom class or protocol.

In a custom Objective-C class, decorating a method with @objc_method makes it available to Objective-C:
a corresponding Objective-C method is created in the new Objective-C class, whose implementation calls the
decorated Python method. The Python method receives all arguments (including self) from the Objective-C
method call, and its return value is passed back to Objective-C.

2.4. Reference 57

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#TypeError
https://developer.apple.com/documentation/objectivec/objc_root_class

Rubicon Documentation, Release 0.4.9

In a custom Objective-C protocol, the behavior is similar, but the method body is ignored, since Objective-
C protocol methods have no implementations. By convention, the method body in this case should be empty
(pass). (Since the method is never called, you could put any other code there as well, but doing so is misleading
and discouraged.)

rubicon.objc.api.objc_classmethod(py_method)
Exposes the decorated method as an Objective-C class method in a custom class or protocol.

This decorator behaves exactly like @objc_method , except that the decorated method becomes a class method,
so it is exposed on the Objective-C class rather than its instances.

Method naming

The name of a Python-defined Objective-C method is same as the Python method’s name, but with all underscores (_)
replaced with colons (:) — for example, initWithWidth_height_ becomes initWithWidth:height:.

Warning: The Objective-C language imposes certain requirements on the usage of colons in method names: a
method’s name must contain exactly as many colons as the method has arguments (excluding the implicit self and
_cmd parameters), and the name of a method with arguments must end with a colon. For example, a method called
init takes no arguments, initWithSize: takes a single argument, initWithWidth:height: takes two, etc.
initWithSize:spam is an invalid method name.

These requirements are not enforced by the Objective-C runtime, but methods that do not follow them cannot easily
be used from regular Objective-C code.

In addition, although the Objective-C language allows method names with multiple consecutive colons or a colon
at the start of the name, such names are considered bad style and never used in practice. For example, spam::,
:ham:, and : are unusual, but valid method names.

Future versions of Rubicon may warn about or disallow such nonstandard method names.

Parameter and return types

The argument and return types of a Python-created Objective-C method are determined based on the Python method’s
type annotations. The annotations may contain any ctypes type, as well as any of the Python types accepted by
ctype_for_type(). If a parameter or the return type is not specified, it defaults to ObjCInstance. The self
parameter is special-cased — its type is always ObjCInstance, even if annotated otherwise. To annotate a method as
returning void, set its return type to None.

Before being passed to the Python method, any object parameters (objc_id) are automatically converted to
ObjCInstance. If the method returns an Objective-C object, it is converted using ns_from_py() before be-
ing returned to Objective-C. These automatic conversions can be disabled by using objc_rawmethod() instead of
objc_method().

The implicit _cmd parameter is not passed to the Python method, as it is normally redundant and not needed. If needed,
the _cmd parameter can be accessed by using objc_rawmethod() instead of objc_method().

rubicon.objc.api.objc_rawmethod(py_method)
Exposes the decorated method as an Objective-C instance method in a custom class, with fewer convenience
features than objc_method().

This decorator behaves similarly to @objc_method . However, unlike with objc_method(), no automatic con-
versions are performed (aside from those by ctypes). This means that all parameter and return types must be
provided as ctypes types (no ctype_for_type() conversion is performed), all arguments are passed in their
raw form as received from ctypes, and the return value must be understood by ctypes.

58 Chapter 2. Community

https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/ctypes.html#module-ctypes

Rubicon Documentation, Release 0.4.9

In addition, the implicit _cmd parameter is exposed to the Python method, which is not the case when using
objc_method(). This means that the decorated Python method must always have an additional _cmd parameter
after self; if it is missing, there will be errors at runtime due to mismatched argument counts. Like self, _cmd
never needs to be annotated, and any annotations on it are ignored.

Defining properties and ivars

rubicon.objc.api.objc_property(vartype=<class 'rubicon.objc.runtime.objc_id'>, weak=False)
Defines a property in a custom Objective-C class or protocol.

This class should be called in the body of an Objective-C subclass or protocol, for example:

class MySubclass(NSObject):
counter = objc_property(NSInteger)

The property type may be any ctypes type, as well as any of the Python types accepted by ctype_for_type().

Defining a property automatically defines a corresponding getter and setter. Following standard Objective-C
naming conventions, for a property name the getter is called name and the setter is called setName:.

In a custom Objective-C class, implementations for the getter and setter are also generated, which store the
property’s value in an ivar called _name. If the property has an object type, the generated setter keeps the
stored object retained, and releases it when it is replaced.

In a custom Objective-C protocol, only the metadata for the property is generated.

If weak is True, the property will be created as a weak property. When assigning an object to it, the reference
count of the object will not be increased. When the object is deallocated, the property value is set to None. Weak
properties are only supported for Objective-C or Python object types.

rubicon.objc.api.objc_ivar(vartype)
Defines an ivar in a custom Objective-C class.

If you want to store additional data on a custom Objective-C class, it is recommended to use properties
(objc_property()) instead of ivars. Properties are a more modern and high-level Objective-C feature, which
automatically deal with reference counting for objects, and creation of getters and setters.

The ivar type may be any ctypes type.

Unlike properties, the contents of an ivar cannot be accessed or modified using Python attribute syntax. Instead,
the get_ivar() and set_ivar() functions need to be used.

rubicon.objc.api.get_ivar(obj, varname, weak=False)
Get the value of obj’s ivar named varname.

The returned object is a ctypes data object.

For non-object types (everything except objc_id and subclasses), the returned data object is backed by the
ivar’s actual memory. This means that the data object is only usable as long as the “owner” object is alive, and
writes to it will directly change the ivar’s value.

For object types, the returned data object is independent of the ivar’s memory. This is because object ivars
may be weak, and thus cannot always be accessed directly by their address.

rubicon.objc.api.set_ivar(obj, varname, value, weak=False)
Set obj’s ivar varname to value. If weak is True, only a weak reference to the value is stored.

value must be a ctypes data object whose type matches that of the ivar.

2.4. Reference 59

https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/ctypes.html#module-ctypes

Rubicon Documentation, Release 0.4.9

Objective-C blocks

Blocks are the Objective-C equivalent of function objects, so Rubicon provides ways to call Objective-C blocks from
Python and to pass Python callables to Objective-C as blocks.

Automatic conversion

If an Objective-C method returns a block (according to its type encoding), Rubicon will convert the return value to a
special ObjCInstance that can be called in Python:

block = an_objc_instance.methodReturningABlock()
res = block(arg, ...)

Similarly, if an Objective-C method has a parameter that expects a block, you can pass in a Python callable object, and
it will be converted to an Objective-C block. In this case, the callable object needs to have parameter and return type
annotations, so that Rubicon can expose this type information to the Objective-C runtime:

def result_handler(res: objc_id) -> None:
print(ObjCInstance(res))

an_objc_instance.doSomethingWithResultHandler(result_handler)

If you are writing a custom Objective-C method (see Creating custom Objective-C classes and protocols), you can
annotate parameter or return types using objc_block so that Rubicon converts them appropriately:

class AnObjCClass(NSObject):
@objc_method
def methodReturningABlock() -> objc_block:

def the_block(arg: NSInteger) -> NSUInteger:
return abs(arg)

return the_block

@objc_method
def doSomethingWithResultHandler_(result_handler: objc_block) -> None:

res = SomeClass.someMethod()
result_handler(res)

Note: These automatic conversions are mostly equivalent to the manual conversions described in the next section.
There are internal technical differences between automatic and manual conversions, but they are not noticeable to most
users.

The internals of automatic conversion and objc_block handling may change in the future, so if you need more control
over the block conversion process, you should use the manual conversions described in the next section.

60 Chapter 2. Community

Rubicon Documentation, Release 0.4.9

Manual conversion

These classes are used to manually convert blocks to Python callables and vice versa. You may need to use them
to perform these conversions outside of Objective-C method calls, or if you need more control over the block’s type
signature.

class rubicon.objc.api.ObjCBlock(pointer[, return_type, *arg_types])
Python wrapper for an Objective-C block object.

This class is used to manually wrap an Objective-C block so that it can be called from Python. Usually Rubicon
will do this automatically, if the block object was returned from an Objective-C method whose return type is
declared to be a block type. If this automatic detection fails, for example if the method’s return type is generic
id, Rubicon has no way to tell that the object in question is a block rather than a regular Objective-C object. In
that case, the object needs to be manually wrapped using ObjCBlock .

The constructor takes a block object, which can be either an ObjCInstance, or a raw objc_id pointer.

Note: objc_block is also accepted, because it is a subclass of objc_id). Normally you do not need to make
use of this, because in most cases Rubicon will automatically convert objc_blocks to a callable object.

In most cases, Rubicon can automatically determine the block’s return type and parameter types. If a block
object doesn’t have return/parameter type information at runtime, Rubicon will raise an error when attempting
to convert it. In that case, you need to explicitly pass the correct return type and parameter types to ObjCBlock
using the restype and argtypes parameters.

__call__(*args)
Invoke the block object with the given arguments.

The arguments and return value are converted from/to Python objects according to the default ctypes
rules, based on the block’s return and parameter types.

class rubicon.objc.api.Block(func[, restype, *argtypes])
A wrapper that exposes a Python callable object to Objective-C as a block.

Note: Block instances are currently not callable from Python, unlike ObjCBlock .

The constructor accepts any Python callable object.

If the callable has parameter and return type annotations, they are used as the block’s parameter and return types.
This allows using Block as a decorator:

@Block
def the_block(arg: NSInteger) -> NSUInteger:

return abs(arg)

For callables without type annotations, the parameter and return types need to be passed to the Block constructor
in the restype and argtypes arguments:

the_block = Block(abs, NSUInteger, NSInteger)

2.4. Reference 61

Rubicon Documentation, Release 0.4.9

Defining custom subclasses of ObjCInstance

The following functions can be used to register custom subclasses of ObjCInstance to be used when wrapping in-
stances of a certain Objective-C class. This mechanism is for example used by Rubicon to provide Python-style oper-
ators and methods on standard Foundation classes, such as NSString and NSDictionary.

rubicon.objc.api.register_type_for_objcclass(pytype, objcclass)
Register a conversion from an Objective-C class to an ObjCInstance subclass.

After a call of this function, when Rubicon wraps an Objective-C object that is an instance of objcclass
(or a subclass), the Python object will have the class pytype rather than ObjCInstance. See
type_for_objcclass() for a full description of the lookup process.

Warning: This function should only be called if no instances of objcclass (or a subclass) have been
wrapped by Rubicon yet. If the function is called later, it will not fully take effect: the types of existing
instances do not change, and mappings for subclasses of objcclass are not updated.

rubicon.objc.api.for_objcclass(objcclass)
Decorator for registering a conversion from an Objective-C class to an ObjCInstance subclass.

This is equivalent to calling register_type_for_objcclass() on the decorated class.

rubicon.objc.api.type_for_objcclass(objcclass)
Look up the ObjCInstance subclass used to represent instances of the given Objective-C class in Python.

If the exact Objective-C class is not registered, each superclass is also checked, defaulting to ObjCInstance
if none of the classes in the superclass chain is registered. Afterwards, all searched superclasses are registered
for the ObjCInstance subclass that was found. (This speeds up future lookups, and ensures that previously
computed mappings are not changed by unrelated registrations.)

This method is mainly intended for internal use by Rubicon, but is exposed in the public API for completeness.

rubicon.objc.api.unregister_type_for_objcclass(objcclass)
Unregister a conversion from an Objective-C class to an ObjCInstance subclass.

Warning: This function should only be called if no instances of objcclass (or a subclass) have been
wrapped by Rubicon yet. If the function is called later, it will not fully take effect: the types of existing
instances do not change, and mappings for subclasses of objcclass are not removed.

rubicon.objc.api.get_type_for_objcclass_map()

Get a copy of all currently registered ObjCInstance subclasses as a mapping.

Keys are Objective-C class addresses as ints.

62 Chapter 2. Community

https://docs.python.org/3/library/functions.html#int

Rubicon Documentation, Release 0.4.9

2.4.3 rubicon.objc.eventloop— Integrating native event loops with asyncio

Note: The documentation for this module is incomplete. You can help by contributing to the documentation.

class rubicon.objc.eventloop.EventLoopPolicy

Rubicon event loop policy.

In this policy, each thread has its own event loop. However, we only automatically create an event loop by default
for the main thread; other threads by default have no event loop.

new_event_loop()

Create a new event loop and return it.

get_default_loop()

Get the default event loop.

get_child_watcher()

Get the watcher for child processes.

If not yet set, a SafeChildWatcher object is automatically created.

set_child_watcher(watcher)
Set the watcher for child processes.

class rubicon.objc.eventloop.CocoaLifecycle(application)
A life cycle manager for Cocoa (NSApplication) apps.

start()

stop()

class rubicon.objc.eventloop.iOSLifecycle

A life cycle manager for iOS (UIApplication) apps.

start()

stop()

2.4.4 rubicon.objc.runtime— Low-level Objective-C runtime access

This module contains types, functions, and C libraries used for low-level access to the Objective-C runtime.

In most cases there is no need to use this module directly — the rubicon.objc.api module provides the same
functionality through a high-level interface.

C libraries

Some commonly used C libraries are provided as CDLLs. Other libraries can be loaded using the load_library()
function.

rubicon.objc.runtime.libc = load_library('c')

The C standard library.

The following functions are accessible by default:

2.4. Reference 63

https://docs.python.org/3/library/asyncio-policy.html#asyncio.SafeChildWatcher
https://docs.python.org/3/library/ctypes.html#ctypes.CDLL
https://en.cppreference.com/w/c

Rubicon Documentation, Release 0.4.9

• free

rubicon.objc.runtime.libobjc = load_library('objc')

The Objective-C runtime library.

The following functions are accessible by default:

• class_addIvar
• class_addMethod
• class_addProperty
• class_addProtocol
• class_copyIvarList
• class_copyMethodList
• class_copyPropertyList
• class_copyProtocolList
• class_getClassMethod
• class_getClassVariable
• class_getInstanceMethod
• class_getInstanceSize
• class_getInstanceVariable
• class_getIvarLayout
• class_getMethodImplementation
• class_getName
• class_getProperty
• class_getSuperclass
• class_getVersion
• class_getWeakIvarLayout
• class_isMetaClass
• class_replaceMethod
• class_respondsToSelector
• class_setIvarLayout
• class_setVersion
• class_setWeakIvarLayout
• ivar_getName
• ivar_getOffset
• ivar_getTypeEncoding
• method_exchangeImplementations
• method_getImplementation
• method_getName

• method_getTypeEncoding
• method_setImplementation
• objc_allocateClassPair
• objc_copyProtocolList
• objc_getAssociatedObject
• objc_getClass
• objc_getMetaClass
• objc_getProtocol
• objc_registerClassPair
• objc_removeAssociatedObjects
• objc_setAssociatedObject
• object_getClass
• object_getClassName
• object_getIvar
• object_setIvar
• property_getAttributes
• property_getName
• property_copyAttributeList
• protocol_addMethodDescription
• protocol_addProtocol
• protocol_addProperty
• objc_allocateProtocol
• protocol_conformsToProtocol
• protocol_copyMethodDescriptionList
• protocol_copyPropertyList
• protocol_copyProtocolList
• protocol_getMethodDescription
• protocol_getName
• objc_registerProtocol
• sel_getName
• sel_isEqual
• sel_registerName

rubicon.objc.runtime.Foundation = load_library('Foundation')

The Foundation framework.

rubicon.objc.runtime.load_library(name)
Load and return the C library with the given name.

If the library could not be found, a ValueError is raised.

Internally, this function uses ctypes.util.find_library() to search for the library in the system-standard
locations. If the library cannot be found this way, it is attempted to load the library from certain hard-coded
locations, as a fallback for systems where find_library does not work (such as iOS).

64 Chapter 2. Community

https://developer.apple.com/documentation/objectivec
https://developer.apple.com/documentation/foundation
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/ctypes.html#ctypes.util.find_library

Rubicon Documentation, Release 0.4.9

Objective-C runtime types

These are various types used by the Objective-C runtime functions.

class rubicon.objc.runtime.objc_id([value])
The id type from <objc/objc.h>.

class rubicon.objc.runtime.objc_block([value])
The low-level type of block pointers.

This type tells Rubicon’s internals that the object in question is a block and not just a regular Objective-C object,
which affects method argument and return value conversions. For more details, see Objective-C blocks.

Note: This type does not correspond to an actual C type or Objective-C class. Although the internal structure of
block objects is documented, as well as the fact that they are Objective-C objects, they do not have a documented
type or class name and are not fully defined in any header file.

Aside from the special conversion behavior, this type is equivalent to objc_id .

class rubicon.objc.runtime.SEL([value])
The SEL type from <objc/objc.h>.

The constructor can be called with a bytes or str object to obtain a selector with that value.

(The normal arguments supported by c_void_p are still accepted.)

name

The selector’s name as bytes.

class rubicon.objc.runtime.Class([value])
The Class type from <objc/objc.h>.

class rubicon.objc.runtime.IMP([value])
The IMP type from <objc/objc.h>.

An IMP cannot be called directly — it must be cast to the correct CFUNCTYPE() first, to provide the necessary
information about its signature.

class rubicon.objc.runtime.Method([value])
The Method type from <objc/runtime.h>.

class rubicon.objc.runtime.Ivar([value])
The Ivar type from <objc/runtime.h>.

class rubicon.objc.runtime.objc_property_t([value])
The objc_property_t type from <objc/runtime.h>.

class rubicon.objc.runtime.objc_property_attribute_t([name, value])
The objc_property_attribute_t structure from <objc/runtime.h>.

name

value

The attribute name and value as C strings (bytes).

class rubicon.objc.runtime.objc_method_description([name, value])
The objc_method_description structure from <objc/runtime.h>.

2.4. Reference 65

https://developer.apple.com/documentation/objectivec/id?language=objc
https://developer.apple.com/documentation/objectivec/sel?language=objc
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/3/library/stdtypes.html#bytes
https://developer.apple.com/documentation/objectivec/class?language=objc
https://developer.apple.com/documentation/objectivec/objective-c_runtime/imp?language=objc
https://docs.python.org/3/library/ctypes.html#ctypes.CFUNCTYPE
https://developer.apple.com/documentation/objectivec/method?language=objc
https://developer.apple.com/documentation/objectivec/ivar?language=objc
https://developer.apple.com/documentation/objectivec/objc_property_t?language=objc
https://developer.apple.com/documentation/objectivec/objc_property_attribute_t?language=objc
https://docs.python.org/3/library/stdtypes.html#bytes
https://developer.apple.com/documentation/objectivec/objc_method_description?language=objc

Rubicon Documentation, Release 0.4.9

name

The method name as a SEL.

types

The method’s signature encoding as a C string (bytes).

class rubicon.objc.runtime.objc_super([receiver, super_class])
The objc_super structure from <objc/message.h>.

receiver

The receiver of the call, as an objc_id .

super_class

The class in which to start searching for method implementations, as a Class.

Objective-C runtime utility functions

These utility functions provide easier access from Python to certain parts of the Objective-C runtime.

rubicon.objc.runtime.object_isClass(obj)
Return whether the given Objective-C object is a class (or a metaclass).

This is equivalent to the libobjc function object_isClass from <objc/runtime.h>, which is only available
since OS X 10.10 and iOS 8. This module-level function is provided to support older systems — it uses the
libobjc function if available, and otherwise emulates it.

rubicon.objc.runtime.get_class(name)
Get the Objective-C class with the given name as a Class object.

If no class with the given name is loaded, None is returned, and the Objective-C runtime will log a warning
message.

rubicon.objc.runtime.should_use_stret(restype)
Return whether a method returning the given type must be called using objc_msgSend_stret on the current
system.

rubicon.objc.runtime.should_use_fpret(restype)
Return whether a method returning the given type must be called using objc_msgSend_fpret on the current
system.

rubicon.objc.runtime.send_message(receiver, selector, *args, restype, argtypes=None, varargs=None)
Call a method on the receiver with the given selector and arguments.

This is the equivalent of an Objective-C method call like [receiver sel:args].

Note: Some Objective-C methods take variadic arguments (varargs), for example +[NSString stringWithFor-
mat:]. When using send_message(), variadic arguments are treated differently from regular arguments: they
are not passed as normal function arguments in *args, but as a list in a separate varargs keyword argument.

This explicit separation of regular and variadic arguments protects against accidentally passing too many ar-
guments into a method. By default these extra arguments would be considered varargs and passed on to the
method, even if the method in question doesn’t take varargs. Because of how the Objective-C runtime and most
C calling conventions work, this error would otherwise be silently ignored.

The types of varargs are not included in the argtypes list. Instead, the values are automatically converted to
C types using the default ctypes argument conversion rules. To ensure that all varargs are converted to the
expected C types, it is recommended to manually convert all varargs to ctypes types instead of relying on
automatic conversions. For example:

66 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#bytes
https://developer.apple.com/documentation/objectivec/objc_super?language=objc
https://developer.apple.com/documentation/objectivec/1418659-object_isclass?language=objc
https://developer.apple.com/documentation/foundation/nsstring/1497275-stringwithformat?language=objc
https://developer.apple.com/documentation/foundation/nsstring/1497275-stringwithformat?language=objc
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/ctypes.html#module-ctypes

Rubicon Documentation, Release 0.4.9

send_message(
NSString,
"stringWithFormat:",
at("%i %s %@"),
restype=objc_id,
argtypes=[objc_id],
varargs=[c_int(123), cast(b"C string", c_char_p), at("ObjC string")],

)

Parameters

• receiver – The object on which to call the method, as an ObjCInstance or objc_id .

• selector – The name of the method as a str, bytes, or SEL.

• args – The method arguments.

• restype – The return type of the method.

• argtypes – The argument types of the method, as a list. Defaults to [].

• varargs – Variadic arguments for the method, as a list. Defaults to []. These arguments
are converted according to the default ctypes conversion rules.

rubicon.objc.runtime.send_super(cls, receiver, selector, *args, restype=<class 'ctypes.c_void_p'>,
argtypes=None, varargs=None, _allow_dealloc=False)

In the context of the given class, call a superclass method on the receiver with the given selector and arguments.

This is the equivalent of an Objective-C method call like [super sel:args] in the class cls.

In practice, the first parameter should always be the special variable __class__, and the second parameter should
be self. A typical send_super() call would be send_super(__class__, self, 'init') for example.

The special variable __class__ is defined by Python and stands for the class object that is being created by the
current class block. The exact reasons why __class__ must be passed manually are somewhat technical, and
are not directly relevant to users of send_super(). For a full explanation, see issue beeware/rubicon-objc#107
and PR beeware/rubicon-objc#108.

Although it is possible to pass other values than __class__ and self for the first two parameters, this is strongly
discouraged. Doing so is not supported by the Objective-C language, and relies on implementation details of the
superclasses.

Parameters

• cls – The class in whose context the super call is happening, as an ObjCClass or Class.

• receiver – The object on which to call the method, as an ObjCInstance, objc_id , or
c_void_p.

• selector – The name of the method as a str, bytes, or SEL.

• args – The method arguments.

• restype – The return type of the method.

• argtypes – The argument types of the method, as a list. Defaults to [].

• varargs – Variadic arguments for the method, as a list. Defaults to []. These arguments
are converted according to the default ctypes conversion rules.

2.4. Reference 67

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://github.com/beeware/rubicon-objc/issues/107
https://github.com/beeware/rubicon-objc/pull/108
https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/ctypes.html#module-ctypes

Rubicon Documentation, Release 0.4.9

rubicon.objc.runtime.add_method(cls, selector, method, encoding, replace=False)
Add a new instance method to the given class.

To add a class method, add an instance method to the metaclass.

Parameters

• cls – The Objective-C class to which to add the method, as an ObjCClass or Class.

• selector – The name for the new method, as a str, bytes, or SEL.

• method – The method implementation, as a Python callable or a C function address.

• encoding – The method’s signature (return type and argument types) as a list. The types
of the implicit self and _cmd parameters must be included in the signature.

• replace – If the class already implements a method with the given name, replaces the cur-
rent implementation if True. Raises a ValueError error otherwise.

Returns
The ctypes C function pointer object that was created for the method’s implementation. This
return value can be ignored. (In version 0.4.0 and older, callers were required to manually keep
a reference to this function pointer object to ensure that it isn’t garbage-collected. Rubicon now
does this automatically.)

rubicon.objc.runtime.add_ivar(cls, name, vartype)
Add a new instance variable of type vartype to cls.

rubicon.objc.runtime.get_ivar(obj, varname, weak=False)
Get the value of obj’s ivar named varname.

The returned object is a ctypes data object.

For non-object types (everything except objc_id and subclasses), the returned data object is backed by the
ivar’s actual memory. This means that the data object is only usable as long as the “owner” object is alive, and
writes to it will directly change the ivar’s value.

For object types, the returned data object is independent of the ivar’s memory. This is because object ivars
may be weak, and thus cannot always be accessed directly by their address.

rubicon.objc.runtime.set_ivar(obj, varname, value, weak=False)
Set obj’s ivar varname to value. If weak is True, only a weak reference to the value is stored.

value must be a ctypes data object whose type matches that of the ivar.

2.4.5 rubicon.objc.types— Non-Objective-C types and utilities

This module contains definitions for common C constants and types, and utilities for working with C types.

Common C type definitions

These are commonly used C types from various frameworks.

class rubicon.objc.types.c_ptrdiff_t([value])
The ptrdiff_t type from <stddef.h>. Equivalent to c_long on 64-bit systems and c_int on 32-bit systems.

class rubicon.objc.types.NSInteger([value])
The NSInteger type from <objc/NSObjCRuntime.h>. Equivalent to c_long on 64-bit systems and c_int on
32-bit systems.

68 Chapter 2. Community

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://en.cppreference.com/w/c/types/ptrdiff_t
https://docs.python.org/3/library/ctypes.html#ctypes.c_long
https://docs.python.org/3/library/ctypes.html#ctypes.c_int
https://developer.apple.com/documentation/objectivec/nsinteger?language=objc
https://docs.python.org/3/library/ctypes.html#ctypes.c_long
https://docs.python.org/3/library/ctypes.html#ctypes.c_int

Rubicon Documentation, Release 0.4.9

class rubicon.objc.types.NSUInteger([value])
The NSUInteger type from <objc/NSObjCRuntime.h>. Equivalent to c_ulong on 64-bit systems and c_uint
on 32-bit systems.

class rubicon.objc.types.CGFloat([value])
The CGFloat type from <CoreGraphics/CGBase.h>. Equivalent to c_double on 64-bit systems and c_float
on 32-bit systems.

class rubicon.objc.types.NSPoint([x, y])
The NSPoint structure from <Foundation/NSGeometry.h>.

Note: On 64-bit systems this is an alias for CGPoint.

x

y

The X and Y coordinates as CGFloats.

class rubicon.objc.types.CGPoint([x, y])
The CGPoint structure from <CoreGraphics/CGGeometry.h>.

x

y

The X and Y coordinates as CGFloats.

class rubicon.objc.types.NSSize([width, height])
The NSSize structure from <Foundation/NSGeometry.h>.

Note: On 64-bit systems this is an alias for CGSize.

width

height

The width and height as CGFloats.

class rubicon.objc.types.CGSize([width, height])
The CGSize structure from <CoreGraphics/CGGeometry.h>.

width

height

The width and height as CGFloats.

class rubicon.objc.types.NSRect([origin, size])
The NSRect structure from <Foundation/NSGeometry.h>.

Note: On 64-bit systems this is an alias for CGRect.

origin

The origin as a NSPoint.

size

The size as a NSSize.

2.4. Reference 69

https://developer.apple.com/documentation/objectivec/nsuinteger?language=objc
https://docs.python.org/3/library/ctypes.html#ctypes.c_ulong
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint
https://developer.apple.com/documentation/corefoundation/cgfloat?language=objc
https://docs.python.org/3/library/ctypes.html#ctypes.c_double
https://docs.python.org/3/library/ctypes.html#ctypes.c_float
https://developer.apple.com/documentation/foundation/nspoint?language=objc
https://developer.apple.com/documentation/corefoundation/cgpoint?language=objc
https://developer.apple.com/documentation/foundation/nssize?language=objc
https://developer.apple.com/documentation/corefoundation/cgsize?language=objc
https://developer.apple.com/documentation/foundation/nsrect?language=objc

Rubicon Documentation, Release 0.4.9

class rubicon.objc.types.CGRect([origin, size])
The CGRect structure from <CoreGraphics/CGGeometry.h>.

origin

The origin as a CGPoint.

size

The size as a CGSize.

class rubicon.objc.types.UIEdgeInsets([top, left, bottom, right])
The UIEdgeInsets structure from <UIKit/UIGeometry.h>.

top

left

bottom

right

The insets as CGFloats.

class rubicon.objc.types.NSEdgeInsets([top, left, bottom, right])
The NSEdgeInsets structure from <Foundation/NSGeometry.h>.

top

left

bottom

right

The insets as CGFloats.

class rubicon.objc.types.NSTimeInterval([value])
The NSTimeInterval type from <Foundation/NSDate.h>. Equivalent to c_double.

class rubicon.objc.types.CFIndex([value])
The CFIndex type from <CoreFoundation/CFBase.h>. Equivalent to c_longlong on 64-bit systems and
c_long on 32-bit systems.

class rubicon.objc.types.UniChar([value])
The UniChar type from <MacTypes.h>. Equivalent to c_ushort.

class rubicon.objc.types.unichar([value])
The unichar type from <Foundation/NSString.h>. Equivalent to c_ushort.

class rubicon.objc.types.CGGlyph([value])
The CGGlyph type from <CoreGraphics/CGFont.h>. Equivalent to c_ushort.

class rubicon.objc.types.CFRange([location, length])
The CFRange type from <CoreFoundation/CFBase.h>.

location

length

The location and length as CFIndexes.

class rubicon.objc.types.NSRange([location, length])
The NSRange type from <Foundation/NSRange.h>.

location

length

The location and length as NSUIntegers.

70 Chapter 2. Community

https://developer.apple.com/documentation/corefoundation/cgrect?language=objc
https://developer.apple.com/documentation/uikit/uiedgeinsets?language=objc
https://developer.apple.com/documentation/foundation/nsedgeinsets?language=objc
https://developer.apple.com/documentation/foundation/nstimeinterval?language=objc
https://docs.python.org/3/library/ctypes.html#ctypes.c_double
https://developer.apple.com/documentation/corefoundation/cfindex?language=objc
https://docs.python.org/3/library/ctypes.html#ctypes.c_longlong
https://docs.python.org/3/library/ctypes.html#ctypes.c_long
https://developer.apple.com/documentation/kernel/unichar?language=objc
https://docs.python.org/3/library/ctypes.html#ctypes.c_ushort
https://developer.apple.com/documentation/foundation/unichar?language=objc
https://docs.python.org/3/library/ctypes.html#ctypes.c_ushort
https://developer.apple.com/documentation/coregraphics/cgglyph?language=objc
https://docs.python.org/3/library/ctypes.html#ctypes.c_ushort
https://developer.apple.com/documentation/corefoundation/cfrange?language=objc
https://developer.apple.com/documentation/foundation/nsrange?language=objc

Rubicon Documentation, Release 0.4.9

Common C constants

These are commonly used C constants from various frameworks.

rubicon.objc.types.UIEdgeInsetsZero

The constant UIEdgeInsetsZero: a UIEdgeInsets instance with all insets set to zero.

rubicon.objc.types.NSZeroPoint

The constant NSZeroPoint: a NSPoint instance with the X and Y coordinates set to zero.

rubicon.objc.types.NSIntegerMax

The macro constant NSIntegerMax from <objc/NSObjCRuntime.h>: the maximum value that a NSInteger
can hold.

rubicon.objc.types.NSNotFound

The constant NSNotFound from <Foundation/NSObjCRuntime.h>: a NSInteger sentinel value indicating
that an item was not found (usually when searching in a collection).

Architecture detection constants

The following constants provide information about the architecture of the current environment. All of them are equiv-
alent to the C compiler macros of the same names.

rubicon.objc.types.__LP64__

Indicates whether the current environment is 64-bit. If true, C longs and pointers are 64 bits in size, otherwise
32 bits.

rubicon.objc.types.__i386__

rubicon.objc.types.__x86_64__

rubicon.objc.types.__arm__

rubicon.objc.types.__arm64__

Each of these constants is true if the current environment uses the named architecture. At most one of these
constants is true at once in a single Python runtime. (If the current architecture cannot be determined, all of
these constants are false.)

Objective-C type encoding conversion

These functions are used to convert Objective-C type encoding strings to and from ctypes types, and to manage custom
conversions in both directions.

All Objective-C encoding strings are represented as bytes rather than str.

rubicon.objc.types.ctype_for_encoding(encoding)
Return the C type corresponding to an Objective-C type encoding.

If a C type has been registered for the encoding, that type is returned. Otherwise, if the type encoding represents
a compound type (pointer, array, structure, or union), the contained types are converted recursively. A new C
type is then created from the converted ctypes, and is registered for the encoding (so that future conversions of
the same encoding return the same C type).

For example, the type encoding {spam=ic} is not registered by default. However, the contained types i and
c are registered, so they are converted individually and used to create a new Structure with two fields of the
correct types. The new structure type is then registered for the original encoding {spam=ic} and returned.

Raises
ValueError – if the conversion fails at any point

2.4. Reference 71

https://developer.apple.com/documentation/uikit/uiedgeinsetszero?language=objc
https://developer.apple.com/documentation/foundation/nszeropoint?language=objc
https://developer.apple.com/documentation/objectivec/nsintegermax?language=objc
https://developer.apple.com/documentation/foundation/nsnotfound?language=objc
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ctypes.html#ctypes.Structure
https://docs.python.org/3/library/exceptions.html#ValueError

Rubicon Documentation, Release 0.4.9

rubicon.objc.types.encoding_for_ctype(ctype)
Return the Objective-C type encoding for the given ctypes type.

If a type encoding has been registered for the C type, that encoding is returned. Otherwise, if the C type is a
pointer type, its pointed-to type is encoded and used to construct the pointer type encoding.

Automatic encoding of other compound types (arrays, structures, and unions) is currently not sup-
ported. To encode such types, a type encoding must be manually provided for them using
register_preferred_encoding() or register_encoding().

Raises
ValueError – if the conversion fails at any point

rubicon.objc.types.register_preferred_encoding(encoding, ctype)
Register a preferred conversion between an Objective-C type encoding and a C type.

“Preferred” means that any existing conversions in each direction are overwritten with the new conversion. To
register an encoding without overwriting existing conversions, use register_encoding().

rubicon.objc.types.with_preferred_encoding(encoding)
Register a preferred conversion between an Objective-C type encoding and the decorated C type.

This is equivalent to calling register_preferred_encoding() on the decorated C type.

rubicon.objc.types.register_encoding(encoding, ctype)
Register an additional conversion between an Objective-C type encoding and a C type.

“Additional” means that any existing conversions in either direction are not overwritten with the new conversion.
To register an encoding and overwrite existing conversions, use register_preferred_encoding().

rubicon.objc.types.with_encoding(encoding)
Register an additional conversion between an Objective-C type encoding and the decorated C type.

This is equivalent to calling register_encoding() on the decorated C type.

rubicon.objc.types.unregister_encoding(encoding)
Unregister the conversion from an Objective-C type encoding to its corresponding C type.

Note that this does not remove any conversions in the other direction (from a C type to this encoding). These
conversions may be replaced with register_encoding(), or unregistered with unregister_ctype(). To
remove all ctypes for an encoding, use unregister_encoding_all().

If the encoding was not registered previously, nothing happens.

rubicon.objc.types.unregister_encoding_all(encoding)
Unregister all conversions between an Objective-C type encoding and all corresponding ctypes.

All conversions from any C type to this encoding are removed recursively using unregister_ctype_all().

If the encoding was not registered previously, nothing happens.

rubicon.objc.types.unregister_ctype(ctype)
Unregister the conversion from a C type to its corresponding Objective-C type encoding.

Note that this does not remove any conversions in the other direction (from an encoding to this C type). These
conversions may be replaced with register_encoding(), or unregistered with unregister_encoding().
To remove all encodings for a C type, use unregister_ctype_all().

If the C type was not registered previously, nothing happens.

72 Chapter 2. Community

https://docs.python.org/3/library/exceptions.html#ValueError

Rubicon Documentation, Release 0.4.9

rubicon.objc.types.unregister_ctype_all(ctype)
Unregister all conversions between a C type and all corresponding Objective-C type encodings.

All conversions from any type encoding to this C type are removed recursively using
unregister_encoding_all().

If the C type was not registered previously, nothing happens.

rubicon.objc.types.get_ctype_for_encoding_map()

Get a copy of all currently registered encoding-to-C type conversions as a map.

rubicon.objc.types.get_encoding_for_ctype_map()

Get a copy of all currently registered C type-to-encoding conversions as a map.

rubicon.objc.types.split_method_encoding(encoding)
Split a method signature encoding into a sequence of type encodings.

The first type encoding represents the return type, all remaining type encodings represent the argument types.

If there are any numbers after a type encoding, they are ignored. On PowerPC, these numbers indicated each
argument/return value’s offset on the stack. These numbers are meaningless on modern architectures.

rubicon.objc.types.ctypes_for_method_encoding(encoding)
Convert a method signature encoding into a sequence of ctypes.

This is equivalent to first splitting the method signature encoding using split_method_encoding(), and then
converting each individual type encoding using ctype_for_encoding().

Default registered type encodings

The following table lists Objective-C’s standard type encodings for primitive types, and the corresponding registered
ctypes. These mappings can be considered stable, but nonetheless users should not hard code these encodings unless
necessary. Instead, the encoding_for_ctype() function should be used to encode types, because it is less error-prone
and more readable than typing encodings out by hand.

2.4. Reference 73

Rubicon Documentation, Release 0.4.9

Ctype Type
encod-
ing

Notes

None
(void)

v

c_bool B This refers to the bool type from C99 and C++. It is not necessarily the same as the BOOL
type, which may be either c_byte or c_bool depending on the system and architecture.

c_byte c
c_ubyte C
c_short s
c_ushort S
c_long l
c_ulong L
c_int i On 32-bit systems, c_int is an alias for c_long, and will be encoded as such.
c_uint I On 32-bit systems, c_uint is an alias for c_ulong, and will be encoded as such.
c_longlongq On 64-bit systems, c_longlong is an alias for c_long, and will be encoded as such.
c_ulonglongQ On 64-bit systems, c_ulonglong is an alias for c_ulong, and will be encoded as such.
c_float f
c_double d
c_longdoubleD On ARM, c_longdouble is an alias for c_double, and will be encoded as such.
c_char c Only when encoding. Decoding c produces c_byte, to allow using signed char as a

Boolean value.
c_char_p *
POINTER(c_char)* Only when encoding. Decoding * produces c_char_p for easier use of C strings.
POINTER(c_byte)* Only when encoding. Decoding * produces c_char_p for easier use of C strings.
POINTER(c_ubyte)* Only when encoding. Decoding * produces c_char_p for easier use of C strings.
c_wchar i Only when encoding. Decoding i produces c_int.
c_wchar_p ^i Only when encoding. Decoding ^i produces POINTER(c_int).
c_void_p ^v
UnknownPointer^? This encoding stands for a pointer to a type that cannot be encoded, which in practice means

a function pointer.
UnknownPointer^{?},

^(?)
Only when decoding. These encodings stand for pointers to a structure or union with un-
known name and fields.

objc_id @ Class name suffixes in the encoding (e. g. @"NSString") are ignored.
objc_block@? Block signature suffixes in the encoding (e. g. @?<v@?>) are ignored.
SEL :
Class #

class rubicon.objc.types.UnknownPointer(value=None)
Placeholder for the “unknown pointer” types ^?, ^{?} and ^(?).

Not to be confused with a ^v void pointer.

Usually a ^? is a function pointer, but because the encoding doesn’t contain the function signature, you need to
manually create a CFUNCTYPE with the proper types, and cast this pointer to it.

^{?} and ^(?) are pointers to a structure or union (respectively) with unknown name and fields. Such a type
also cannot be used meaningfully without casting it to the correct pointer type first.

In addition, the following types defined by Rubicon are registered, but their encodings may vary depending on the
system and architecture:

74 Chapter 2. Community

https://docs.python.org/3/library/ctypes.html#ctypes.c_bool
https://docs.python.org/3/library/ctypes.html#ctypes.c_byte
https://docs.python.org/3/library/ctypes.html#ctypes.c_bool
https://docs.python.org/3/library/ctypes.html#ctypes.c_byte
https://docs.python.org/3/library/ctypes.html#ctypes.c_ubyte
https://docs.python.org/3/library/ctypes.html#ctypes.c_short
https://docs.python.org/3/library/ctypes.html#ctypes.c_ushort
https://docs.python.org/3/library/ctypes.html#ctypes.c_long
https://docs.python.org/3/library/ctypes.html#ctypes.c_ulong
https://docs.python.org/3/library/ctypes.html#ctypes.c_int
https://docs.python.org/3/library/ctypes.html#ctypes.c_int
https://docs.python.org/3/library/ctypes.html#ctypes.c_long
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint
https://docs.python.org/3/library/ctypes.html#ctypes.c_ulong
https://docs.python.org/3/library/ctypes.html#ctypes.c_longlong
https://docs.python.org/3/library/ctypes.html#ctypes.c_longlong
https://docs.python.org/3/library/ctypes.html#ctypes.c_long
https://docs.python.org/3/library/ctypes.html#ctypes.c_ulonglong
https://docs.python.org/3/library/ctypes.html#ctypes.c_ulonglong
https://docs.python.org/3/library/ctypes.html#ctypes.c_ulong
https://docs.python.org/3/library/ctypes.html#ctypes.c_float
https://docs.python.org/3/library/ctypes.html#ctypes.c_double
https://docs.python.org/3/library/ctypes.html#ctypes.c_longdouble
https://docs.python.org/3/library/ctypes.html#ctypes.c_longdouble
https://docs.python.org/3/library/ctypes.html#ctypes.c_double
https://docs.python.org/3/library/ctypes.html#ctypes.c_char
https://docs.python.org/3/library/ctypes.html#ctypes.c_byte
https://docs.python.org/3/library/ctypes.html#ctypes.c_char_p
https://docs.python.org/3/library/ctypes.html#ctypes.c_char_p
https://docs.python.org/3/library/ctypes.html#ctypes.c_char_p
https://docs.python.org/3/library/ctypes.html#ctypes.c_char_p
https://docs.python.org/3/library/ctypes.html#ctypes.c_wchar
https://docs.python.org/3/library/ctypes.html#ctypes.c_int
https://docs.python.org/3/library/ctypes.html#ctypes.c_wchar_p
https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p

Rubicon Documentation, Release 0.4.9

• ctypes.py_object
• NSInteger
• NSUInteger
• CGFloat
• NSPoint
• CGPoint
• NSSize
• CGSize
• NSRect

• CGRect
• UIEdgeInsets
• NSEdgeInsets
• NSTimeInterval
• CFIndex
• UniChar
• unichar
• CGGlyph
• NSRange

Conversion of Python sequences to C structures and arrays

This function is used to convert a Python sequence (such as a tuple or list) to a specific C structure or array type.
This function is mainly used internally by Rubicon, to allow passing Python sequences as method parameters where a
C structure or array would normally be required. Most users will not need to use this function directly.

rubicon.objc.types.compound_value_for_sequence(seq, tp)
Create a C structure or array of type tp, initialized with values from seq.

If tp is a Structure type, the newly created structure’s fields are initialized in declaration order with the values
from seq. seq must have as many elements as the structure has fields.

If tp is a Array type, the newly created array is initialized with the values from seq. seq must have as many
elements as the array type.

In both cases, if a structure field type or the array element type is itself a structure or array type, the corresponding
value from seq is recursively converted as well.

Python to ctypes type mapping

These functions are used to map Python types to equivalent ctypes types, and to add or remove such mappings. This
mechanism is mainly used internally by Rubicon, to for example allow ObjCInstance to be used instead of objc_id
in method type annotations. Most users will not need to use these functions directly.

rubicon.objc.types.ctype_for_type(tp)
Look up the C type corresponding to the given Python type.

This conversion is applied to types used in objc_method signatures, objc_ivar types, etc. This function
translates Python built-in types and rubicon.objc classes to their ctypes equivalents. Unregistered types
(including types that are already ctypes) are returned unchanged.

rubicon.objc.types.register_ctype_for_type(tp, ctype)
Register a conversion from a Python type to a C type.

rubicon.objc.types.unregister_ctype_for_type(tp)
Unregister a conversion from a Python type to a C type.

rubicon.objc.types.get_ctype_for_type_map()

Get a copy of all currently registered type-to-C type conversions as a mapping.

2.4. Reference 75

https://docs.python.org/3/library/ctypes.html#ctypes.py_object
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/ctypes.html#ctypes.Structure
https://docs.python.org/3/library/ctypes.html#ctypes.Array
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/ctypes.html#module-ctypes

Rubicon Documentation, Release 0.4.9

Default registered mappings

The following mappings are registered by default by Rubicon.

Python type Ctype
int c_int
float c_float
bool c_bool
bytes c_char_p
ObjCInstance objc_id
ObjCClass Class

This is the technical reference for public APIs provided by Rubicon.

Note that the rubicon.objc package also contains other submodules not documented here. These are for internal use
only and not part of the public API; they may change at any time without notice.

76 Chapter 2. Community

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/ctypes.html#ctypes.c_float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/ctypes.html#ctypes.c_bool
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/ctypes.html#ctypes.c_char_p

PYTHON MODULE INDEX

r
rubicon.objc, 47
rubicon.objc.api, 48
rubicon.objc.eventloop, 63
rubicon.objc.runtime, 63
rubicon.objc.types, 68

77

Rubicon Documentation, Release 0.4.9

78 Python Module Index

INDEX

Symbols
__LP64__ (in module rubicon.objc.types), 71
__arm64__ (in module rubicon.objc.types), 71
__arm__ (in module rubicon.objc.types), 71
__call__() (rubicon.objc.api.ObjCBlock method), 61
__contains__() (rubicon.objc.api.NSArray method),

53
__contains__() (rubicon.objc.api.NSDictionary

method), 54
__delitem__() (rubicon.objc.api.NSMutableArray

method), 53
__delitem__() (rubi-

con.objc.api.NSMutableDictionary method),
54

__eq__() (rubicon.objc.api.NSArray method), 53
__eq__() (rubicon.objc.api.NSDictionary method), 54
__getattr__() (rubicon.objc.api.ObjCInstance

method), 49
__getitem__() (rubicon.objc.api.NSArray method), 53
__getitem__() (rubicon.objc.api.NSDictionary

method), 54
__i386__ (in module rubicon.objc.types), 71
__instancecheck__() (rubicon.objc.api.ObjCClass

method), 51
__instancecheck__() (rubicon.objc.api.ObjCProtocol

method), 55
__iter__() (rubicon.objc.api.NSArray method), 53
__iter__() (rubicon.objc.api.NSDictionary method),

54
__len__() (rubicon.objc.api.NSArray method), 53
__len__() (rubicon.objc.api.NSDictionary method), 54
__ne__() (rubicon.objc.api.NSArray method), 53
__ne__() (rubicon.objc.api.NSDictionary method), 54
__repr__() (rubicon.objc.api.ObjCInstance method),

49
__setattr__() (rubicon.objc.api.ObjCInstance

method), 49
__setitem__() (rubicon.objc.api.NSMutableArray

method), 53
__setitem__() (rubi-

con.objc.api.NSMutableDictionary method),
54

__str__() (rubicon.objc.api.NSString method), 52
__str__() (rubicon.objc.api.ObjCInstance method), 49
__subclasscheck__() (rubicon.objc.api.ObjCClass

method), 51
__subclasscheck__() (rubicon.objc.api.ObjCProtocol

method), 55
__x86_64__ (in module rubicon.objc.types), 71
_as_parameter_ (rubicon.objc.api.ObjCInstance

attribute), 48

A
add_ivar() (in module rubicon.objc.runtime), 68
add_method() (in module rubicon.objc.runtime), 67
append() (rubicon.objc.api.NSMutableArray method),

53
at() (in module rubicon.objc.api), 57
auto_rename (rubicon.objc.api.ObjCClass attribute), 50
auto_rename (rubicon.objc.api.ObjCProtocol attribute),

55

B
Block (class in rubicon.objc.api), 61
bottom (rubicon.objc.types.NSEdgeInsets attribute), 70
bottom (rubicon.objc.types.UIEdgeInsets attribute), 70

C
c_ptrdiff_t (class in rubicon.objc.types), 68
CFIndex (class in rubicon.objc.types), 70
CFRange (class in rubicon.objc.types), 70
CGFloat (class in rubicon.objc.types), 69
CGGlyph (class in rubicon.objc.types), 70
CGPoint (class in rubicon.objc.types), 69
CGRect (class in rubicon.objc.types), 69
CGSize (class in rubicon.objc.types), 69
Class (class in rubicon.objc.runtime), 65
clear() (rubicon.objc.api.NSMutableArray method), 53
clear() (rubicon.objc.api.NSMutableDictionary

method), 54
CocoaLifecycle (class in rubicon.objc.eventloop), 63
compound_value_for_sequence() (in module rubi-

con.objc.types), 75
copy() (rubicon.objc.api.NSArray method), 53

79

Rubicon Documentation, Release 0.4.9

copy() (rubicon.objc.api.NSDictionary method), 54
count() (rubicon.objc.api.NSArray method), 53
ctype_for_encoding() (in module rubi-

con.objc.types), 71
ctype_for_type() (in module rubicon.objc.types), 75
ctypes_for_method_encoding() (in module rubi-

con.objc.types), 73

D
debugDescription (rubicon.objc.api.NSObject at-

tribute), 52
declare_class_property() (rubi-

con.objc.api.ObjCClass method), 51
declare_property() (rubicon.objc.api.ObjCClass

method), 50
description (rubicon.objc.api.NSObject attribute), 52

E
encoding_for_ctype() (in module rubi-

con.objc.types), 72
EventLoopPolicy (class in rubicon.objc.eventloop), 63
extend() (rubicon.objc.api.NSMutableArray method),

53

F
for_objcclass() (in module rubicon.objc.api), 62
Foundation (in module rubicon.objc.runtime), 64

G
get() (rubicon.objc.api.NSDictionary method), 54
get_child_watcher() (rubi-

con.objc.eventloop.EventLoopPolicy method),
63

get_class() (in module rubicon.objc.runtime), 66
get_ctype_for_encoding_map() (in module rubi-

con.objc.types), 73
get_ctype_for_type_map() (in module rubi-

con.objc.types), 75
get_default_loop() (rubi-

con.objc.eventloop.EventLoopPolicy method),
63

get_encoding_for_ctype_map() (in module rubi-
con.objc.types), 73

get_ivar() (in module rubicon.objc.api), 59
get_ivar() (in module rubicon.objc.runtime), 68
get_type_for_objcclass_map() (in module rubi-

con.objc.api), 62

H
height (rubicon.objc.types.CGSize attribute), 69
height (rubicon.objc.types.NSSize attribute), 69

I
IMP (class in rubicon.objc.runtime), 65

index() (rubicon.objc.api.NSArray method), 53
insert() (rubicon.objc.api.NSMutableArray method),

53
iOSLifecycle (class in rubicon.objc.eventloop), 63
items() (rubicon.objc.api.NSDictionary method), 54
Ivar (class in rubicon.objc.runtime), 65

K
keys() (rubicon.objc.api.NSDictionary method), 54

L
left (rubicon.objc.types.NSEdgeInsets attribute), 70
left (rubicon.objc.types.UIEdgeInsets attribute), 70
length (rubicon.objc.types.CFRange attribute), 70
length (rubicon.objc.types.NSRange attribute), 70
libc (in module rubicon.objc.runtime), 63
libobjc (in module rubicon.objc.runtime), 64
load_library() (in module rubicon.objc.runtime), 64
location (rubicon.objc.types.CFRange attribute), 70
location (rubicon.objc.types.NSRange attribute), 70

M
Method (class in rubicon.objc.runtime), 65
module

rubicon.objc, 47
rubicon.objc.api, 48
rubicon.objc.eventloop, 63
rubicon.objc.runtime, 63
rubicon.objc.types, 68

N
name (rubicon.objc.api.ObjCClass attribute), 50
name (rubicon.objc.api.ObjCProtocol attribute), 55
name (rubicon.objc.runtime.objc_method_description at-

tribute), 65
name (rubicon.objc.runtime.objc_property_attribute_t at-

tribute), 65
name (rubicon.objc.runtime.SEL attribute), 65
new_event_loop() (rubi-

con.objc.eventloop.EventLoopPolicy method),
63

ns_from_py() (in module rubicon.objc.api), 56
NSArray (class in rubicon.objc.api), 53
NSData (class in rubicon.objc.api), 52
NSDecimalNumber (class in rubicon.objc.api), 52
NSDictionary (class in rubicon.objc.api), 53
NSEdgeInsets (class in rubicon.objc.types), 70
NSInteger (class in rubicon.objc.types), 68
NSIntegerMax (in module rubicon.objc.types), 71
NSMutableArray (class in rubicon.objc.api), 53
NSMutableDictionary (class in rubicon.objc.api), 54
NSNotFound (in module rubicon.objc.types), 71
NSNumber (class in rubicon.objc.api), 52

80 Index

Rubicon Documentation, Release 0.4.9

NSObject (class in rubicon.objc.api), 51
NSObjectProtocol (in module rubicon.objc.api), 56
NSPoint (class in rubicon.objc.types), 69
NSRange (class in rubicon.objc.types), 70
NSRect (class in rubicon.objc.types), 69
NSSize (class in rubicon.objc.types), 69
NSString (class in rubicon.objc.api), 52
NSTimeInterval (class in rubicon.objc.types), 70
NSUInteger (class in rubicon.objc.types), 68
NSZeroPoint (in module rubicon.objc.types), 71

O
objc_block (class in rubicon.objc.runtime), 65
objc_class (rubicon.objc.api.ObjCInstance attribute),

49
objc_classmethod() (in module rubicon.objc.api), 58
objc_const() (in module rubicon.objc.api), 49
objc_id (class in rubicon.objc.runtime), 65
objc_ivar() (in module rubicon.objc.api), 59
objc_method() (in module rubicon.objc.api), 57
objc_method_description (class in rubi-

con.objc.runtime), 65
objc_property() (in module rubicon.objc.api), 59
objc_property_attribute_t (class in rubi-

con.objc.runtime), 65
objc_property_t (class in rubicon.objc.runtime), 65
objc_rawmethod() (in module rubicon.objc.api), 58
objc_super (class in rubicon.objc.runtime), 66
ObjCBlock (class in rubicon.objc.api), 61
ObjCClass (class in rubicon.objc.api), 50
ObjCInstance (class in rubicon.objc.api), 48
ObjCMetaClass (class in rubicon.objc.api), 51
ObjCProtocol (class in rubicon.objc.api), 55
object_isClass() (in module rubicon.objc.runtime),

66
origin (rubicon.objc.types.CGRect attribute), 70
origin (rubicon.objc.types.NSRect attribute), 69

P
pop() (rubicon.objc.api.NSMutableArray method), 53
pop() (rubicon.objc.api.NSMutableDictionary method),

54
popitem() (rubicon.objc.api.NSMutableDictionary

method), 54
Protocol (class in rubicon.objc.api), 52
protocols (rubicon.objc.api.ObjCClass attribute), 50
protocols (rubicon.objc.api.ObjCProtocol attribute),

55
ptr (rubicon.objc.api.ObjCInstance attribute), 48
py_from_ns() (in module rubicon.objc.api), 56
Python Enhancement Proposals

PEP 517, 41
PEP 518, 41

R
receiver (rubicon.objc.runtime.objc_super attribute),

66
register_ctype_for_type() (in module rubi-

con.objc.types), 75
register_encoding() (in module rubicon.objc.types),

72
register_preferred_encoding() (in module rubi-

con.objc.types), 72
register_type_for_objcclass() (in module rubi-

con.objc.api), 62
remove() (rubicon.objc.api.NSMutableArray method),

53
reverse() (rubicon.objc.api.NSMutableArray method),

53
right (rubicon.objc.types.NSEdgeInsets attribute), 70
right (rubicon.objc.types.UIEdgeInsets attribute), 70
rubicon.objc

module, 47
rubicon.objc.api

module, 48
rubicon.objc.eventloop

module, 63
rubicon.objc.runtime

module, 63
rubicon.objc.types

module, 68

S
SEL (class in rubicon.objc.runtime), 65
send_message() (in module rubicon.objc.runtime), 66
send_super() (in module rubicon.objc.runtime), 67
set_child_watcher() (rubi-

con.objc.eventloop.EventLoopPolicy method),
63

set_ivar() (in module rubicon.objc.api), 59
set_ivar() (in module rubicon.objc.runtime), 68
setdefault() (rubicon.objc.api.NSMutableDictionary

method), 54
should_use_fpret() (in module rubi-

con.objc.runtime), 66
should_use_stret() (in module rubi-

con.objc.runtime), 66
size (rubicon.objc.types.CGRect attribute), 70
size (rubicon.objc.types.NSRect attribute), 69
split_method_encoding() (in module rubi-

con.objc.types), 73
start() (rubicon.objc.eventloop.CocoaLifecycle

method), 63
start() (rubicon.objc.eventloop.iOSLifecycle method),

63
stop() (rubicon.objc.eventloop.CocoaLifecycle

method), 63

Index 81

Rubicon Documentation, Release 0.4.9

stop() (rubicon.objc.eventloop.iOSLifecycle method),
63

super_class (rubicon.objc.runtime.objc_super at-
tribute), 66

superclass (rubicon.objc.api.ObjCClass attribute), 50

T
top (rubicon.objc.types.NSEdgeInsets attribute), 70
top (rubicon.objc.types.UIEdgeInsets attribute), 70
type_for_objcclass() (in module rubicon.objc.api),

62
types (rubicon.objc.runtime.objc_method_description

attribute), 66

U
UIEdgeInsets (class in rubicon.objc.types), 70
UIEdgeInsetsZero (in module rubicon.objc.types), 71
UniChar (class in rubicon.objc.types), 70
unichar (class in rubicon.objc.types), 70
UnknownPointer (class in rubicon.objc.types), 74
unregister_ctype() (in module rubicon.objc.types),

72
unregister_ctype_all() (in module rubi-

con.objc.types), 72
unregister_ctype_for_type() (in module rubi-

con.objc.types), 75
unregister_encoding() (in module rubi-

con.objc.types), 72
unregister_encoding_all() (in module rubi-

con.objc.types), 72
unregister_type_for_objcclass() (in module rubi-

con.objc.api), 62
update() (rubicon.objc.api.NSMutableDictionary

method), 54
UTF8String (rubicon.objc.api.NSString attribute), 52

V
value (rubicon.objc.runtime.objc_property_attribute_t

attribute), 65
values() (rubicon.objc.api.NSDictionary method), 54

W
width (rubicon.objc.types.CGSize attribute), 69
width (rubicon.objc.types.NSSize attribute), 69
with_encoding() (in module rubicon.objc.types), 72
with_preferred_encoding() (in module rubi-

con.objc.types), 72

X
x (rubicon.objc.types.CGPoint attribute), 69
x (rubicon.objc.types.NSPoint attribute), 69

Y
y (rubicon.objc.types.CGPoint attribute), 69

y (rubicon.objc.types.NSPoint attribute), 69

82 Index

	Table of contents
	Tutorial
	How-to guides
	Background
	Reference

	Community
	Tutorials
	Your first bridge
	Accessing NSURL
	Instance methods
	Time to take over the world!
	Next steps

	Tutorial 2 - Writing your own class
	Objective-C properties
	Class naming
	What, no __init__()?
	Next steps

	Tutorial 1 - Your first bridge
	Tutorial 2 - Writing your own class

	How-to Guides
	Getting Started with Rubicon
	You’re just not my type: Using Objective-C types in Python
	Type annotations
	Type conversions
	Argument conversion
	Return value conversion and wrapping

	Invoking Objective-C methods
	Python-style APIs and methods for Objective-C objects
	Strings
	Lists
	Dictionaries

	Manual conversions
	Converting from Python to Objective-C
	Converting from Objective-C to Python

	Memory management for Objective-C instances
	Reference counting in Rubicon Objective-C
	Reference cycles in Objective-C

	Using and creating Objective-C protocols
	Looking up a protocol
	Implementing a protocol
	Writing custom protocols

	Asynchronous Programming with Rubicon
	Integrating asyncio with CoreFoundation
	Integrating asyncio with AppKit and NSApplication
	Integrating asyncio with iOS and UIApplication

	Calling plain C functions from Python
	A simple example: puts
	Inline functions (e.g. NSLocationInRange)
	Global variables and constants (e.g. NSFoundationVersionNumber)
	Objective-C object constants

	A complex example: dispatch_get_main_queue
	Further information

	How to contribute code to Rubicon
	Set up your development environment

	Contributing to the documentation
	Create a .rst file
	Build documentation locally
	Documentation linting
	Rebuilding all documentation
	Live documentation preview

	Internal How-to guides
	How to cut a Rubicon-ObjC release

	Background
	Why “Rubicon”?
	So… why the name Rubicon?

	The Rubicon Objective-C Developer and User community
	Code of Conduct
	Contributing

	Success Stories
	Release History
	0.4.9 (2024-05-03)
	Features
	Bugfixes
	Backward Incompatible Changes
	Documentation
	Misc

	0.4.8 (2024-04-03)
	Features
	Bugfixes
	Documentation
	Misc

	0.4.7 (2023-10-19)
	Features
	Bugfixes
	Backward Incompatible Changes
	Documentation
	Misc

	0.4.6 (2023-04-14)
	Bugfixes
	Misc

	0.4.5 (2023-02-03)
	Bugfixes
	Misc

	0.4.5rc1 (2023-01-25)
	Features
	Misc

	0.4.4 (2023-01-23)
	Bugfixes
	Misc

	0.4.3 (2022-12-05)
	Features
	Bugfixes
	Misc
	0.4.2 (2021-11-14)
	Features
	Bugfixes

	0.4.1 (2021-07-25)
	Features
	Bugfixes
	Deprecations and Removals
	Misc

	0.4.0 (2020-07-04)
	Features
	Bugfixes
	Improved Documentation
	Deprecations and Removals
	Misc

	0.3.1
	0.3.0
	0.2.10
	0.2.9
	0.2.8
	0.2.7
	0.2.6
	0.2.5
	0.2.4
	0.2.3
	0.2.2
	0.2.1
	0.2.0
	0.1.3
	0.1.2
	0.1.1
	0.1.0

	Road map

	Reference
	rubicon.objc — The main Rubicon module
	Exported Attributes
	From rubicon.objc.api
	From rubicon.objc.runtime
	From rubicon.objc.types

	rubicon.objc.api — The high-level Rubicon API
	Objective-C objects
	Objective-C classes
	Standard Objective-C and Foundation classes

	Objective-C protocols
	Standard Objective-C and Foundation protocols

	Converting objects between Objective-C and Python
	Creating custom Objective-C classes and protocols
	Defining methods
	Method naming
	Parameter and return types

	Defining properties and ivars

	Objective-C blocks
	Automatic conversion
	Manual conversion

	Defining custom subclasses of ObjCInstance

	rubicon.objc.eventloop — Integrating native event loops with asyncio
	rubicon.objc.runtime — Low-level Objective-C runtime access
	C libraries
	Objective-C runtime types
	Objective-C runtime utility functions

	rubicon.objc.types — Non-Objective-C types and utilities
	Common C type definitions
	Common C constants
	Architecture detection constants

	Objective-C type encoding conversion
	Default registered type encodings

	Conversion of Python sequences to C structures and arrays
	Python to ctypes type mapping
	Default registered mappings

	Python Module Index
	Index

